11 research outputs found

    Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia

    Get PDF
    Environmental impacts resulting from historic lead and zinc mining in Kabwe, Zambia affect human health due to the dust generated from the mine waste that contains lead, a known hazardous pollutant. We employed microbially induced calcium carbonate precipitation (MICP), an alternative capping method, to prevent dust generation and reduce the mobility of contaminants. Pb-resistant Oceanobacillus profundus KBZ 1-3 and O. profundus KBZ 2e5 isolated from Kabwe were used to biocement the sand that would act as a cover to prevent dust and water infiltration. Sand biocemented by KBZ 1-3 and KBZ 2-5 had maximum unconfined compressive strength values of 3.2 MPa and 5.5MPa, respectively. Additionally, biocemented sand exhibited reduced water permeability values of 9.6*10e-8 m/s and 8.9x1010e-8 m/s for O. profundus KBZ 1-3 and KBZ 2-5, respectively, which could potentially limit the entrance of water and oxygen into the dump, hence reducing the leaching of heavy metals. We propose that these isolates represent an option for bioremediating contaminated waste by preventing both metallic dust from becoming airborne and rainwater from infiltrating into the waste. O. profundus KBZ 1-3 and O. profundus KBZ 2-5 isolated form Kabwe represent a novel species that has, for the first time, been applied in a bioremediation study

    Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine

    Get PDF
    The present study investigated biosorption of Pb (II) and Zn (II) using a heavy metal tolerant bacterium Oceanobacillus profundus KBZ 3-2 isolated from a contaminated site. The effects of process parameters such as effect on bacterial growth, pH and initial lead ion concentration were studied. The results showed that the maximum removal percentage for Pb (II) was 97% at an initial concentration of 50 mg/L whereas maximum removal percentage for Zn (II) was at 54% at an initial concentration of 2 mg/L obtained at pH 6 and 30 °C. The isolated bacteria were found to sequester both Pb (II) and Zn (II) in the extracellular polymeric substance (EPS). The EPS facilitates ion exchange and metal chelation-complexation by virtue of the existence of ionizable functional groups such as carboxyl, sulfate, and phosphate present in the protein and polysaccharides. Therefore, the use of indigenous bacteria in the remediation of contaminated water is an eco-friendly way of solving anthropogenic contamination

    Distinct spin and orbital dynamics in Sr2_2RuO4_4

    No full text
    The unconventional superconductor Sr2_2RuO4_4 has long served as a benchmark for theories of correlated-electron materials. The determination of the superconducting pairing mechanism requires detailed experimental information on collective bosonic excitations as potential mediators of Cooper pairing. We have used Ru L3_3-edge resonant inelastic x-ray scattering to obtain comprehensive maps of the electronic excitations of Sr2_2RuO4_4 over the entire Brillouin zone. We observe multiple branches of dispersive spin and orbital excitations associated with distinctly different energy scales. The spin and orbital dynamical response functions calculated within the dynamical mean-field theory are in excellent agreement with the experimental data. Our results highlight the Hund metal nature of Sr2_2RuO4_4 and provide key information for the understanding of its unconventional superconductivity
    corecore