869 research outputs found

    Intuitive and Deliberative Empathizers and Systemizers

    Get PDF
    ObjectiveRecent findings suggest there may be some overlap between individual differences in orientations for intuitive thinking and empathizing, and between deliberative thinking and systemizing. This overlap is surprising, given that intuitive and deliberative thinking derive from dual-process theories that concern domain-general types of processing, whereas theoretically, empathizing and systemizing are domain-specific orientations for understanding people and lawful physical phenomena. MethodThe present studies (Study 1: N=2,789, Study 2: N=87; Finnish volunteers ages 15-69, 65% females) analyzed each of these four constructs using self-report as well as performance measures. ResultsConfirmatory factor analysis showed that systemizing was strongly and positively related to deliberative thinking and negatively related to intuitive thinking. Empathizing was negatively related to deliberative thinking, whereas no association between empathizing and intuition was found. However, some deliberative aspects and some intuitive aspects were involved in empathizing. ConclusionsThe findings indicate that a distinction between intuitive empathizing and deliberative systemizing is not warranted.Peer reviewe

    Freshwater content variability in the Arctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03051, doi:10.1029/2003JC001940.Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin-wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation (AOO)) that has a prominent decadal variability [Proshutinsky and Johnson, 1997]. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice [Häkkinen and Mellor, 1992; Häkkinen, 1999]. The surface forcing is based on National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide freshwater balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated freshwater anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice melt/freeze anomalies in response to AO are less significant considering the whole Arctic freshwater balance.We gratefully acknowledge the support from National Science Foundation under Grant No OPP-0230184 (AP) and from NASA Headquarters (SH)

    Coherent Multidecadal Atmospheric and Oceanic Variability in the North Atlantic: Blocking Corresponds with Warm Subpolar Ocean

    Get PDF
    Winters with frequent atmospheric blocking, in a band of latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean. This is evident in atmospheric reanalysis data, both modern and for the full 20th century. Blocking is approximately in phase with Atlantic multidecadal ocean variability (AMV). Wintertime atmospheric blocking involves a highly distorted jetstream, isolating large regions of air from the westerly circulation. It influences the ocean through windstress-curl and associated air/sea heat flux. While blocking is a relatively high-frequency phenomenon, it is strongly modulated over decadal timescales. The blocked regime (weaker ocean gyres, weaker air-sea heat flux, paradoxically increased transport of warm subtropical waters poleward) contributes to the warm phase of AMV. Atmospheric blocking better describes the early 20thC warming and 1996-2010 warm period than does the NAO index. It has roots in the hemispheric circulation and jet stream dynamics. Subpolar Atlantic variability covaries with distant AMOC fields: both these connections may express the global influence of the subpolar North Atlantic ocean on the global climate system

    Is there screwiness at the end of the QCD cascades?

    Get PDF
    We discuss what happens at the end of the QCD cascades. We show that, with just a few reasonable assumptions, the emission of soft gluons is constrained to produce an ordered field in the form of a helix. We describe how to modify the Lund fragmentation scheme in order to fragment such a field. Our modified fragmentation scheme yields results which are consistent with current experimental measurements, but predicts at least one signature which should be observable.Comment: 21+1 page

    Linking The Atlantic Gyres: Warm, Saline Intrusions From Subtropical Atlantic to the Nordic Seas

    Get PDF
    Ocean state estimates from SODA assimilation are analyzed to understand how major shifts in the North Atlantic Current path relate to AMOC, and how these shifts are related to large scale ocean circulation and surface forcing. These complement surface-drifter and altimetry data showing the same events. SODA data indicate that the warm water limb of AMOC, reaching to at least 600m depth, expanded in density/salinity space greatly after 1995, and that Similar events occurred in the late 1960s and around 1980. While there were large changes in the upper limb, there was no immediate response in the dense return flow, at least not in SODA, however one would expect a delayed response of increasing AMOC due to the positive feedback from increased salt transport. These upper limb changes are winddriven, involving changes in the eastern subpolar gyre, visible in the subduction of low potential vorticity waters. The subtropical gyre has been weak during the times of the northward intrusions of the highly saline subtropical waters, while the NAO index has been neutral or in a negative phase. The image of subtropical/subpolar gyre exchange through teleconnections within the AMOC overturning cell will be described

    Severe Outbreak of Sorbitol-Fermenting Escherichia coli O157 via Unpasteurized Milk and Farm Visits, Finland 2012

    Get PDF
    Shiga toxin-producing, sorbitol-fermenting Escherichia coli O157 (SF O157) has emerged as a cause of severe human illness. Despite frequent human findings, its transmission routes and reservoirs remain largely unknown. Foodborne transmission and reservoir in cattle have been suspected, but with limited supporting evidence. This study describes the outbreak of SF O157 that occurred in Finland in 2012. The outbreak originated from a recreational farm selling unpasteurized milk, as revealed by epidemiologic and microbiological investigations, and involved six hospitalized children and two asymptomatic adults with culture-confirmed infection. An identical strain of SF O157 was isolated from patients, cattle and the farm environment, and epidemiologic analysis suggested unpasteurized milk as the vehicle of transmission. This study reports the first milkborne outbreak of SF O157, provides supporting evidence of cattle as a reservoir and highlights the health risks related to the consumption of unpasteurized milk
    corecore