729 research outputs found

    Photoabsorption Spectra of Na_n+ clusters: Thermal Line-Broadening Mechanisms

    Full text link
    Photoabsorption cross sections of small sodium cluster cations (Nan+_n^+, n=3,5,7 and 9) were calculated at various temperatures with the time-dependent local-density-approximation (TDLDA) in conjunction with ab initio molecular dynamics simulations, yielding spectra that agree with measured ones without ad-hoc line broadening or renormalization. Three thermal line-broadening mechanisms are revealed: (I) lifting of level degeneracies caused by symmetry-breaking ionic motions, (II) oscillatory shifts of the entire spectrum caused by breathing vibrations, and (III) cluster structural isomerizations.Comment: 4 pages,2 figures, to appear in Phys. Rev. Let

    CO oxidation on a single Pd atom supported on magnesia

    Full text link
    The oxidation of CO on single Pd atoms anchored to MgO(100) surface oxygen vacancies is studied with temperature-programmed-reaction mass-spectrometry and infrared spectroscopy. In one-heating-cycle experiments CO2_2, formed from O2_2 and CO preadsorbed at 90 K, is detected at 260 K and 500 K. Ab-initio simulations suggest two reaction routes, with Pd(CO)2_2O2_2 and Pd(CO3_3)CO found as precursors for the low and high temperature channels, respectively. Both reactions result in annealing of the vacancy and induce migration and coalescence of the remaining Pd-CO to form larger clusters.Comment: 4 pages, 3 figures, scheduled for publication in PRL 18 June 200

    Para to Ortho transition of metallic dimers on Si(001)

    Full text link
    Extensive electronic structure calculations are performed to obtain the stable geometries of metals like Al, Ga and In on the Si(001) surface at 0.5 ML and 1 ML coverages. Our results coupled with previous theoretical findings explain the recent experimental data in a comprehensive fashion. At low coverages, as shown by previous works, `Para' dimers give the lowest energy structure. With increasing coverage beyond 0.5 ML, `Ortho' dimers become part of low energy configurations leading toward a `Para' to `Ortho' transition at 1 ML coverage. For In mixed staggered dimers (`Ortho' and `Para') give the lowest energy configuration. For Ga, mixed dimers are non-staggered, while for Al `Para' to `Ortho' transition of dimers is complete. Thus at intermediate coverages between 0.5 and 1 ML, the `Ortho' and `Para' dimers may coexist on the surface. Consequently, this may be an explanation of the fact that the experimental observations can be successfully interpreted using either orientation. A supported zigzag structure at 0.5 ML, which resembles (CH)x{\rm (CH)_x}, does not undergo a dimerization transition, and hence stays semi-metallic. Also, unlike (CH)x{\rm (CH)_x} the soliton formation is ruled out for this structure.Comment: 8 pages, 6 figure

    Plant naturalisations are constrained by temperature but released by precipitation

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The underlying code and data can be accessed at DOI: 10.5281/zenodo.5710327 (https://doi.org/10.5281/zenodo.5710327). Links and details to acquire any additional data required are also included.Aim During naturalization, many species undergo climatic niche expansion, in which they spread into climates with which they have not been associated previously. This suggests that species are absent from some climatically suitable areas in their native range, but the reason for this is unknown. We aimed to evaluate whether the climatic conditions in which expansion occurs provide information about the causes of niche expansion. Location Global. Time period Contemporary. Major taxa studied Terrestrial plants. Methods We compiled native and naturalized occurrence data for 606 terrestrial plant species and compared their native and naturalized climatic niches to detect evidence of climatic niche expansion. Where species showed evidence of niche expansion, we used a variety of circular modelling techniques to investigate further whether species were more likely to expand, or expand further, along some climatic axes than others. We also asked, with or without expansion, whether species were more successful at colonizing the hottest, coldest, wettest or driest portions of their potential niche. Results We found climatic niche expansion in 45% of naturalizations of 606 terrestrial plants. Species expanded predominantly into wetter climate than their native niche, somewhat less frequently into drier climate, and only in rare instances into hotter or colder climate. Species were least likely to naturalize in the hottest or coldest portions of their native climatic niche. Main conclusions Our results could suggest that the wetter margins of native niches are limited by biotic interactions that are relaxed in the naturalized range. Our results could also suggest that evolutionary adaptation to novel precipitation regimes is occurring, and/or there are time lags caused by slow population growth rates in cold and hot conditions. Regardless of the explanation, range margins associated with precipitation might be the least predictable during naturalization or environmental change

    Molecular dynamics study of melting of a bcc metal-vanadium II : thermodynamic melting

    Full text link
    We present molecular dynamics simulations of the thermodynamic melting transition of a bcc metal, vanadium using the Finnis-Sinclair potential. We studied the structural, transport and energetic properties of slabs made of 27 atomic layers with a free surface. We investigated premelting phenomena at the low-index surfaces of vanadium; V(111), V(001), and V(011), finding that as the temperature increases, the V(111) surface disorders first, then the V(100) surface, while the V(110) surface remains stable up to the melting temperature. Also, as the temperature increases, the disorder spreads from the surface layer into the bulk, establishing a thin quasiliquid film in the surface region. We conclude that the hierarchy of premelting phenomena is inversely proportional to the surface atomic density, being most pronounced for the V(111) surface which has the lowest surface density

    Severe Outbreak of Sorbitol-Fermenting Escherichia coli O157 via Unpasteurized Milk and Farm Visits, Finland 2012

    Get PDF
    Shiga toxin-producing, sorbitol-fermenting Escherichia coli O157 (SF O157) has emerged as a cause of severe human illness. Despite frequent human findings, its transmission routes and reservoirs remain largely unknown. Foodborne transmission and reservoir in cattle have been suspected, but with limited supporting evidence. This study describes the outbreak of SF O157 that occurred in Finland in 2012. The outbreak originated from a recreational farm selling unpasteurized milk, as revealed by epidemiologic and microbiological investigations, and involved six hospitalized children and two asymptomatic adults with culture-confirmed infection. An identical strain of SF O157 was isolated from patients, cattle and the farm environment, and epidemiologic analysis suggested unpasteurized milk as the vehicle of transmission. This study reports the first milkborne outbreak of SF O157, provides supporting evidence of cattle as a reservoir and highlights the health risks related to the consumption of unpasteurized milk

    Seasonal and Diurnal Variation of Geomagnetic Activity: Revised \u3cem\u3eDst\u3c/em\u3e Versus External Drivers

    Get PDF
    Daily and seasonal variability of long time series of magnetometer data from Dst stations is examined. Each station separately shows a local minimum of horizontal magnetic component near 18 local time (LT) and weakest activity near 06 LT. The stations were found to have different baselines such that the average levels of activity differed by about 10 nT. This effect was corrected for by introducing a new “base method” for the elimination of the secular variation. This changed the seasonal variability of the Dst index by about 3 nT. The hemispheric differences between the annual variation (larger activity during local winter and autumn solstice) were demonstrated and eliminated from the Dst index by addition of two Southern Hemisphere stations to a new index termed Dst6. Three external drivers of geomagnetic activity were considered: the heliographic latitude, the equinoctial effect, and the Russell–McPherron effect. Using the newly created Dst6 index, it is demonstrated that these three effects account for only about 50% of the daily and seasonal variability of the index. It is not clear what drives the other 50% of the daily and seasonal variability, but it is suggested that the station distribution may play a role
    corecore