82 research outputs found

    Under- treatment and under diagnosis of hypertension: a serious problem in the United Arab Emirates

    Get PDF
    BACKGROUND: Hypertension, notably untreated or uncontrolled, is a major risk factor for cardiovascular diseases (CVD) morbidity and mortality. In countries in transition, little is known about the epidemiology of hypertension, and its biochemical correlates. This study was carried out in Al Ain, United Arab Emirates, to characterize self-reported (SR) normotensives and hypertensives in terms of actual hypertension status, demographic variables, CVD risk factors, treatment, and sequalae. METHODS: A sample, stratified by SR hypertensive status, of 349 SR hypertensives (Mean age ± SD; 50.8 ± 9.2 yrs; Male: 226) and 640 SR normotensives (42.9 ± 9.3 yrs, Male: 444) among nationals and expatriates was used. Hypertensives and normotensive subjects were recruited from various outpatient clinics and government organizations in Al-Ain city, United Arab Emirates (UAE) respectively. Anthropometric and demographic variables were measured by conventional methods. RESULTS: Both under-diagnosis of hypertension (33%) and under-treatment (76%) were common. Characteristics of undiagnosed hypertensives were intermediate between normotensives and SR hypertensives. Under-diagnosis of hypertension was more common among foreigners than among nationals. Risk factors for CVD were more prevalent among SR hypertensives. Obesity, lack of exercise and smoking were found as major risk factors for CVD among hypertensives in this population. CONCLUSION: Hypertension, even severe, is commonly under-diagnosed and under-treated in the UAE. Preventive strategies, better diagnosis and proper treatment compliance should be emphasized to reduce incidence of CVD in this population

    Variations in the Hemagglutinin of the 2009 H1N1 Pandemic Virus: Potential for Strains with Altered Virulence Phenotype?

    Get PDF
    A novel, swine-origin influenza H1N1 virus (H1N1pdm) caused the first pandemic of the 21st century. This pandemic, although efficient in transmission, is mild in virulence. This atypical mild pandemic season has raised concerns regarding the potential of this virus to acquire additional virulence markers either through further adaptation or possibly by immune pressure in the human host. Using the mouse model we generated, within a single round of infection with A/California/04/09/H1N1 (Ca/04), a virus lethal in mice—herein referred to as mouse-adapted Ca/04 (ma-Ca/04). Five amino acid substitutions were found in the genome of ma-Ca/04: 3 in HA (D131E, S186P and A198E), 1 in PA (E298K) and 1 in NP (D101G). Reverse genetics analyses of these mutations indicate that all five mutations from ma-Ca/04 contributed to the lethal phenotype; however, the D131E and S186P mutations—which are also found in the 1918 and seasonal H1N1 viruses—in HA alone were sufficient to confer virulence of Ca/04 in mice. HI assays against H1N1pdm demonstrate that the D131E and S186P mutations caused minor antigenic changes and, likely, affected receptor binding. The rapid selection of ma-Ca/04 in mice suggests that a virus containing this constellation of amino acids might have already been present in Ca/04, likely as minor quasispecies

    A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems

    Get PDF
    The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly

    Current opinion on the role of testosterone in the development of prostate cancer: a dynamic model

    Get PDF
    Background: Since the landmark study conducted by Huggins and Hodges in 1941, a failure to distinguish between the role of testosterone in prostate cancer development and progression has led to the prevailing opinion that high levels of testosterone increase the risk of prostate cancer. To date, this claim remains unproven. Presentation of the Hypothesis: We present a novel dynamic mode of the relationship between testosterone and prostate cancer by hypothesizing that the magnitude of age-related declines in testosterone, rather than a static level of testosterone measured at a single point, may trigger and promote the development of prostate cancer. Testing of the Hypothesis: Although not easily testable currently, prospective cohort studies with population-representative samples and repeated measurements of testosterone or retrospective cohorts with stored blood samples from different ages are warranted in future to test the hypothesis. Implications of the Hypothesis: Our dynamic model can satisfactorily explain the observed age patterns of prostate cancer incidence, the apparent conflicts in epidemiological findings on testosterone and risk of prostate cancer, racial disparities in prostate cancer incidence, risk factors associated with prostate cancer, and the role of testosterone in prostate cancer progression. Our dynamic model may also have implications for testosterone replacement therapy

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore