16 research outputs found

    Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized Control

    Full text link
    Diffusion models excel at capturing complex data distributions, such as those of natural images and proteins. While diffusion models are trained to represent the distribution in the training dataset, we often are more concerned with other properties, such as the aesthetic quality of the generated images or the functional properties of generated proteins. Diffusion models can be finetuned in a goal-directed way by maximizing the value of some reward function (e.g., the aesthetic quality of an image). However, these approaches may lead to reduced sample diversity, significant deviations from the training data distribution, and even poor sample quality due to the exploitation of an imperfect reward function. The last issue often occurs when the reward function is a learned model meant to approximate a ground-truth "genuine" reward, as is the case in many practical applications. These challenges, collectively termed "reward collapse," pose a substantial obstacle. To address this reward collapse, we frame the finetuning problem as entropy-regularized control against the pretrained diffusion model, i.e., directly optimizing entropy-enhanced rewards with neural SDEs. We present theoretical and empirical evidence that demonstrates our framework is capable of efficiently generating diverse samples with high genuine rewards, mitigating the overoptimization of imperfect reward models.Comment: Under review (codes will be released soon

    ASXL1 interacts with the cohesin complex to maintain chromatid separation and gene expression for normal hematopoiesis

    Get PDF
    ASXL1 is frequently mutated in a spectrum of myeloid malignancies with poor prognosis. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice; however, the underlying molecular mechanisms remain unclear. We report that ASXL1 interacts with the cohesin complex, which has been shown to guide sister chromatid segregation and regulate gene expression. Loss of Asxl1 impairs the cohesin function, as reflected by an impaired telophase chromatid disjunction in hematopoietic cells. Chromatin immunoprecipitation followed by DNA sequencing data revealed that ASXL1, RAD21, and SMC1A share 93% of genomic binding sites at promoter regions in Lin-cKit+ (LK) cells. We have shown that loss of Asxl1 reduces the genome binding of RAD21 and SMC1A and alters the expression of ASXL1/cohesin target genes in LK cells. Our study underscores the ASXL1-cohesin interaction as a novel means to maintain normal sister chromatid separation and regulate gene expression in hematopoietic cells

    Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal Relational Learning

    Full text link
    Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible, which is critical to safety-guaranteed self-driving systems. With cluttered traffic scenes and limited visual cues, it is of great challenge to predict how long there will be an accident from early observed frames. Most existing approaches are developed to learn features of accident-relevant agents for accident anticipation, while ignoring the features of their spatial and temporal relations. Besides, current deterministic deep neural networks could be overconfident in false predictions, leading to high risk of traffic accidents caused by self-driving systems. In this paper, we propose an uncertainty-based accident anticipation model with spatio-temporal relational learning. It sequentially predicts the probability of traffic accident occurrence with dashcam videos. Specifically, we propose to take advantage of graph convolution and recurrent networks for relational feature learning, and leverage Bayesian neural networks to address the intrinsic variability of latent relational representations. The derived uncertainty-based ranking loss is found to significantly boost model performance by improving the quality of relational features. In addition, we collect a new Car Crash Dataset (CCD) for traffic accident anticipation which contains environmental attributes and accident reasons annotations. Experimental results on both public and the newly-compiled datasets show state-of-the-art performance of our model. Our code and CCD dataset are available at https://github.com/Cogito2012/UString.Comment: Accepted by ACM MM 202
    corecore