8 research outputs found

    Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins

    Get PDF
    Mitoxantrone is a potent antitumor drug, widely used in the treatment of various cancers. In the present study, we have investigated and compared the affinity of anticancer drug, mitoxantrone, to EDTA-soluble chromatin (SE-chromatin), DNA and histones employing UV/Vis, fluorescence, CD spectroscopy, gel electrophoresis and equilibrium dialysis techniques. The results showed that the interaction of mitoxantrone with SE-chromatin proceeds into compaction/aggregation as revealed by reduction in the absorbencies at 608 and 260 nm (hypochromicity) and disappearance of both histones and DNA on the gels. Mitoxantrone interacts strongly with histone proteins in solution making structural changes in the molecule as shown by CD and fluorescence analysis. The binding isotherms demonstrate a positive cooperative binding pattern for the chromatin- mitoxantrone interaction. It is suggested higher binding affinity of mitoxantrone to chromatin compared to DNA implying that the histone proteins may play an important role in the chromatin- mitoxantrone interaction process

    Improved Production of Recombinant Human β-NGF in Escherichia coli – a Bioreactor Scale Study

    Get PDF
    Human nerve growth factor β (β-NGF) is considered a major therapeutic agent for treatment of neurodegenerative diseases. We have previously reported the optimized conditions for β-NGF overproduction in Escherichia coli in a shake-flask culture. In this study the optimal %DO (dissolved oxygen) and post induction temperature values for improved production of β-NGF were found in the bioreactor scale using response surface methodology (RSM) as the most common statistical method. Also, for further enhancement of the yield, different post-induction periods of time were selected for testing. In all experiments, the productivity level and bacterial cell growth were evaluated by western blotting technique and monitoring of absorbance at 600 nm, respectively. Our results indicated that %DO, the post-induction time and temperature have significant effects on the production of β-NGF. After 2 hours of induction, the low post induction temperature of 32°C and 20% DO were used to increase the production of β-NGF in a 5-l bioreactor. Another important result obtained in this study was that the improved β-NGF production was not achieved at highest dry cell weigh or highest cell growth. These results are definitely of importance for industrial β-NGF production

    Co-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli

    No full text
    Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases. As NGF extracted from natural sources is unsuitable for therapeutic goals, many studies have attempted to produce recombinant β-NGF. In this study, Trigger Factor (TF) chaperone was expressed simultaneously with β-NGF in E. coli in order to obtain increased yield of soluble recombinant human β-NGF.  For this purpose, pET39b (+)::β-NGF and chaperone plasmid pTf16 were transferred to E.coli (DE3 strain). After the induction of each promoter, the total proteins and periplasmic proteins were extracted. To confirm the effects of TF on total protein and soluble β-NGF expression level, Bradford and Dot blot techniques and ImageJ software were used. Then, β-NGF was purified using affinity chromatography column (Ni+2-NTA). Also, the PC12 cells were treated with the protein for one week in order to study the function of purified NGF. Our data indicated that co-expression of TF could increase the soluble and periplasmic production of β-NGF but not total proteins. Also, the treatment of PC12 cell line with purified β-NGF, co-expressed with TF chaperone, showed differentiation of these cells to nerve cells. This indicated that the purified NGF is fully functional. Our data suggest that the co-expression of cytoplasmic chaperone (TF) with recombinant nerve growth factor might be an efficient approach to produce a proper quantity of soluble and active rhNGF

    Evaluation of Anticancer Activity of Extracted Flavonoids from Morus Alba Leaves and its interaction with DNA

    No full text
    ABSTRACT Morous Alba, known as white mulberry contains many oxidative flavonoids, widely used in the treatment of many diseases like hyperglycemia, inflammation, fever and cancer. In the present study we investigated the interaction of extracted flavonoids from Iranian Morus Alba leaves with DNA as a main target for anticancer drugs. Various spectroscopic techniques (UV/Vis, CD and Fluorescence Spectroscopy) were used to detect the interaction. In vivo studies also were done to confirm the effectiveness of the extracted flavonoids. The spectroscopic results showed that the extracted flavonoids bind to DNA especially to the sugar-phosphate backbone and making DNA conformational changes upon this binding. Experiments on the cancerous mice with solid tumors indicated that the treatment of mice with these extracted flavonoids increased significantly the life span but they did not have any effects on the tumor size reduction. These data suggest that Morus Alba flavonoids may use as an effective natural anticancer drug in the near future

    The effect of mitoxantrone as an anticancer drug on hepatocytes nuclei and chromatin: Selective release of histone proteins

    No full text
    Objectives : Mitoxantrone is an anticancer drug widely used in the treatment of various cancers. In the present study the effect of mitoxantrone on chromatin proteins of intact hepatocytes nuclei was investigated and compared with soluble chromatin. Materials and Methods : UV/Vis spectroscopy, SDS polyacrylamide gel electrophoresis, and western bolting were used. Results : The results show that exposure of intact nuclei to various concentrations of mitoxantrone resulted in the release of histone H1 family proteins, H1 and H1°, in a dose-dependent manner but not core histones and high mobility group proteins. Western blot analysis using antiserum against histones H1 and H1° revealed cross-reactivity and confirmed the result. Spectroscopy results showed that mitoxantrone binds to nuclear components and reduces the absorbances at 608 and 400 nm. The binding isotherms revealed cooperative binding with one binding site. Conclusion : From the results it is suggested that mitoxantrone binds to intact nuclei and chromatin with different affinities and linker DNA can be considered as a main binding site for mitoxantrone at the nuclei level
    corecore