94 research outputs found

    Shaping Online Dialogue: Examining How Community Rules Affect Discussion Structures on Reddit

    Full text link
    Community rules play a key part in enabling or constraining the behaviors of members in online communities. However, little is unknown regarding whether and to what degree changing rules actually affects community dynamics. In this paper, we seek to understand how these behavior-governing rules shape the interactions between users, as well as the structure of their discussion. Using the top communities on Reddit (i.e. subreddits), we first contribute a taxonomy of behavior-based rule categories across Reddit. Then, we use a network analysis perspective to discover how changing implementation of different rule categories affects subreddits' user interaction and discussion networks over a 1.5 year period. Our study find several significant effects, including greater clustering among users when subreddits increase rules focused on structural regulation and how restricting allowable content surprisingly leads to more interactions between users. Our findings contribute to research in proactive moderation through rule setting, as well as lend valuable insights for online community designers and moderators to achieve desired community dynamics

    A sEMG-based shared control system with no-target obstacle avoidance for omnidirectional mobile robots

    Get PDF
    We propose a novel shared control strategy for mobile robots in a human-robot interaction manner based on surface eletromyography (sEMG) signals. For security reasons, an obstacle avoidance scheme is introduced to the shared control system as collision avoidance guidance. The motion of the mobile robot is a resultant of compliant motion control and obstacle avoidance. In the mode of compliant motion, the sEMG signals obtained from the operator's forearms are transformed into human commands to control the moving direction and linear velocity of the mobile robot, respectively. When the mobile robot is blocked by obstacles, the motion mode is converted into obstacle avoidance. Aimed at the obstacle avoidance problem without a specific target, we develop a no-target Bug (NT-Bug) algorithm to guide the mobile robot to avoid obstacles and return to the command line. Besides, the command moving direction given by the operator is taken into consideration in the obstacle avoidance process to plan a smoother and safer path for the mobile robot. A model predictive controller is exploited to minimize the tracking errors. Experiments have been implemented to demonstrate the effectiveness of the proposed shared control strategy and the NT-Bug algorithm

    Machine Learning Enabled Prediction of Mechanical Properties of Tungsten Disulfide Monolayer

    Get PDF
    One of two-dimensional transition metal dichalcogenide materials, tungsten disulfide (WS2), has aroused much research interest, and its mechanical properties play an important role in a practical application. Here the mechanical properties of h-WS2 and t-WS2 monolayers in the armchair and zigzag directions are evaluated by utilizing the molecular dynamics (MD) simulations and machine learning (ML) technique. We mainly focus on the effects of chirality, system size, temperature, strain rate, and random vacancy defect on mechanical properties, including fracture strain, fracture strength, and Young’s modulus. We find that the mechanical properties of h-WS2 surpass those of t-WS2 due to the different coordination spheres of the transition metal atoms. It can also be observed that the fracture strain, fracture strength, and Young’s modulus decrease when temperature and vacancy defect ratio are enhanced. The random forest (RF) supervised ML algorithm is employed to model the correlations between different impact factors and target outputs. A total number of 3600 MD simulations are performed to generate the training and testing dataset for the ML model. The mechanical properties of WS2 (i.e., target outputs) can be predicted using the trained model with the knowledge of different input features, such as WS2 type, chirality, temperature, strain rate, and defect ratio. The mean square errors of ML predictions for the mechanical properties are orders of magnitude smaller than the actual values of each property, indicating good training results of the RF model

    SHERF: Generalizable Human NeRF from a Single Image

    Full text link
    Existing Human NeRF methods for reconstructing 3D humans typically rely on multiple 2D images from multi-view cameras or monocular videos captured from fixed camera views. However, in real-world scenarios, human images are often captured from random camera angles, presenting challenges for high-quality 3D human reconstruction. In this paper, we propose SHERF, the first generalizable Human NeRF model for recovering animatable 3D humans from a single input image. SHERF extracts and encodes 3D human representations in canonical space, enabling rendering and animation from free views and poses. To achieve high-fidelity novel view and pose synthesis, the encoded 3D human representations should capture both global appearance and local fine-grained textures. To this end, we propose a bank of 3D-aware hierarchical features, including global, point-level, and pixel-aligned features, to facilitate informative encoding. Global features enhance the information extracted from the single input image and complement the information missing from the partial 2D observation. Point-level features provide strong clues of 3D human structure, while pixel-aligned features preserve more fine-grained details. To effectively integrate the 3D-aware hierarchical feature bank, we design a feature fusion transformer. Extensive experiments on THuman, RenderPeople, ZJU_MoCap, and HuMMan datasets demonstrate that SHERF achieves state-of-the-art performance, with better generalizability for novel view and pose synthesis.Comment: Accepted by ICCV2023. Project webpage: https://skhu101.github.io/SHERF

    Zolly: Zoom Focal Length Correctly for Perspective-Distorted Human Mesh Reconstruction

    Full text link
    As it is hard to calibrate single-view RGB images in the wild, existing 3D human mesh reconstruction (3DHMR) methods either use a constant large focal length or estimate one based on the background environment context, which can not tackle the problem of the torso, limb, hand or face distortion caused by perspective camera projection when the camera is close to the human body. The naive focal length assumptions can harm this task with the incorrectly formulated projection matrices. To solve this, we propose Zolly, the first 3DHMR method focusing on perspective-distorted images. Our approach begins with analysing the reason for perspective distortion, which we find is mainly caused by the relative location of the human body to the camera center. We propose a new camera model and a novel 2D representation, termed distortion image, which describes the 2D dense distortion scale of the human body. We then estimate the distance from distortion scale features rather than environment context features. Afterwards, we integrate the distortion feature with image features to reconstruct the body mesh. To formulate the correct projection matrix and locate the human body position, we simultaneously use perspective and weak-perspective projection loss. Since existing datasets could not handle this task, we propose the first synthetic dataset PDHuman and extend two real-world datasets tailored for this task, all containing perspective-distorted human images. Extensive experiments show that Zolly outperforms existing state-of-the-art methods on both perspective-distorted datasets and the standard benchmark (3DPW)

    Towards a Learner-Centered Explainable AI: Lessons from the learning sciences

    Full text link
    In this short paper, we argue for a refocusing of XAI around human learning goals. Drawing upon approaches and theories from the learning sciences, we propose a framework for the learner-centered design and evaluation of XAI systems. We illustrate our framework through an ongoing case study in the context of AI-augmented social work.Comment: 7 pages, 2 figure

    SynBody: Synthetic Dataset with Layered Human Models for 3D Human Perception and Modeling

    Full text link
    Synthetic data has emerged as a promising source for 3D human research as it offers low-cost access to large-scale human datasets. To advance the diversity and annotation quality of human models, we introduce a new synthetic dataset, SynBody, with three appealing features: 1) a clothed parametric human model that can generate a diverse range of subjects; 2) the layered human representation that naturally offers high-quality 3D annotations to support multiple tasks; 3) a scalable system for producing realistic data to facilitate real-world tasks. The dataset comprises 1.2M images with corresponding accurate 3D annotations, covering 10,000 human body models, 1,187 actions, and various viewpoints. The dataset includes two subsets for human pose and shape estimation as well as human neural rendering. Extensive experiments on SynBody indicate that it substantially enhances both SMPL and SMPL-X estimation. Furthermore, the incorporation of layered annotations offers a valuable training resource for investigating the Human Neural Radiance Fields (NeRF).Comment: Accepted by ICCV 2023. Project webpage: https://synbody.github.io

    SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation

    Full text link
    Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods still depend largely on a confined set of training datasets. In this work, we investigate scaling up EHPS towards the first generalist foundation model (dubbed SMPLer-X), with up to ViT-Huge as the backbone and training with up to 4.5M instances from diverse data sources. With big data and the large model, SMPLer-X exhibits strong performance across diverse test benchmarks and excellent transferability to even unseen environments. 1) For the data scaling, we perform a systematic investigation on 32 EHPS datasets, including a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. 2) For the model scaling, we take advantage of vision transformers to study the scaling law of model sizes in EHPS. Moreover, our finetuning strategy turn SMPLer-X into specialist models, allowing them to achieve further performance boosts. Notably, our foundation model SMPLer-X consistently delivers state-of-the-art results on seven benchmarks such as AGORA (107.2 mm NMVE), UBody (57.4 mm PVE), EgoBody (63.6 mm PVE), and EHF (62.3 mm PVE without finetuning). Homepage: https://caizhongang.github.io/projects/SMPLer-X/Comment: Homepage: https://caizhongang.github.io/projects/SMPLer-X

    Identification and validation of SERPINE1 as a prognostic and immunological biomarker in pan-cancer and in ccRCC

    Get PDF
    Background:SERPINE1, a serine protease inhibitor involved in the regulation of the plasminogen activation system, was recently identified as a cancer-related gene. However, its clinical significance and potential mechanisms in pan-cancer remain obscure.Methods: In pan-cancer multi-omics data from public datasets, including The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), and online web tools were used to analyze the expression of SERPINE1 in different cancers and its correlation with prognosis, genetic alteration, DNA promoter methylation, biological processes, immunoregulator expression levels, immune cell infiltration into tumor, tumor mutation burden (TMB), microsatellite instability (MSI), immunotherapy response and drug sensitivity. Further, two single-cell databases, Tumor Immune Single-cell Hub 2 (TISCH2) and CancerSEA, were used to explore the expression and potential roles of SERPINE1 at a single-cell level. The aberrant expression of SERPINE1 was further verified in clear cell renal cell carcinoma (ccRCC) through qRT-PCR of clinical patient samples, validation in independent cohorts using The Gene Expression Omnibus (GEO) database, and proteomic validation using the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database.Results: The expression of SERPINE1 was dysregulated in cancers and enriched in endothelial cells and fibroblasts. Copy number amplification and low DNA promoter methylation could be partly responsible for high SERPINE1 expression. High SERPINE1 expression was associated with poor prognosis in 21 cancers. The results of gene set enrichment analysis (GSEA) indicated SERPINE1 involvement in the immune response and tumor malignancy. SERPINE1 expression was also associated with the expression of several immunoregulators and immune cell infiltration and could play an immunosuppression role. Besides, SERPINE1 was found to be related with TMB, MSI, immunotherapy response and sensitivity to several drugs in cancers. Finally, the high expression of SERPINE1 in ccRCC was verified using qRT-PCR performed on patient samples, six independent GEO cohorts, and proteomic data from the CPTAC database.Conclusion: The findings of the present study revealed that SERPINE1 exhibits aberrant expression in various types of cancers and is associated with cancer immunity and tumor malignancy, providing novel insights for individualized cancer treatment

    Concept for a Future Super Proton-Proton Collider

    Full text link
    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.Comment: 34 pages, 8 figures, 5 table
    • …
    corecore