11 research outputs found

    Autophosphorylation-activated protein kinase inactivates the protein tyrosine phosphatase activity of protein phosphatase 2A

    Get PDF
    AbstractPhosphorylation of the catalytic subunit of protein phosphatase 2A (PP2A) on threonines with a distinct autophosphorylation-activated protein kinase [Guo and Damuni (1993) Proc. Natl. Acad. Sci. USA 90, 2500–2504] inactivated the phosphatase with 32P-labelled myelin basic protein prepared by incubation with the kinase domain of the epidermal growth factor receptor, the src-family protein kinases p56lck and p60c-src, myelin basic protein kinase-1, or protamine kinase. Phosphoamino acid analysis demonstrated that the kinase domain of the epidermal growth factor receptor, p56lck and p60c-src phosphorylated myelin basic protein on tyrosines, that the protamine kinase phosphorylated myelin basic protein on serines, and that myelin basic protein kinase-1 phosphorylated myelin basic protein on threonines. The results demonstrate that the autophosphorylation-activated protein kinase not only inactivates the protein serine/threonine phosphatase, but also the protein tyrosine phosphatase activity of PP2A. This autophosphorylation-activated protein kinase-mediated inactivation of PP2A may, in response to extracellular stimuli, not only contribute to the enhanced phosphorylation of cellular proteins on serines and threonines but also on tyrosines

    Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material

    Get PDF
    International audienceHypothesis: superparamagnetic iron oxide nanoparticles (SPIONs) are extensively used as building block of colloidal nanocomposites for biomedical applications. Strategies employed to embed them in a biodegradable and biocompatible polymer matrix often fail to achieve a high density of loading which would greatly benefit to applications such as imaging and hyperthermia. In this study, poly(acrylic acid) coated SPION (γ-Fe2O3-PAA) are self-assembled with hydrolysable poly(serine ester) by electrostatic complexation, leading to perfectly defined spherical particles with ultra-high density of magnetic material and an ability to auto-degrade into individual SPION and biocompatible byproducts.Experiments: self-assembly and auto-degradation of γ-Fe2O3-PAA/poly(serine ester) and γ-Fe2O3-PAA/poly(serine ester)-b-PEG colloidal particles are studied by light scattering and microscopy. Colloidal stability in bio-fluids, hyperthermia under alternating magnetic field, cellular uptake, cytotoxicity and degradation of γ-Fe2O3-PAA/poly(serine ester)-b-PEG in living cells are investigated.Findings: a remarkably slow electrostatic complexation leads to dense superparamagnetic γ-Fe2O3-PAA/poly(serine ester)-b-PEG polyion complexes (PICs) with controlled sizes (150 – 500 nm) and times of degradation in aqueous solvents (700 – 5000 h). The material shows good sustainability during hyperthermia, is well taken up by MC3T3 cells and non-cytotoxic. TEM images reveal a mechanism of degradation by “peeling” and fragmentation. In cells, PICs are reduced into individual SPIONs within 72 h

    Mitochondrial Calcium Transporters Mediate Sensitivity to Noise-Induced Losses of Hair Cells and Cochlear Synapses

    Get PDF
    Mitochondria modulate cellular calcium homeostasis by the combined action of the mitochondrial calcium uniporter (MCU), a selective calcium entry channel, and the sodium calcium exchanger (NCLX), which extrudes calcium from mitochondria. In this study, we investigated MCU and NCLX in noise-induced hearing loss (NIHL) using adult CBA/J mice and noise-induced alterations of inner hair cell (IHC) synapses in MCU knockout mice. Following noise exposure, immunoreactivity of MCU increased in cochlear sensory hair cells of the basal turn, while immunoreactivity of NCLX decreased in a time- and exposure-dependent manner. Inhibition of MCU activity via MCU siRNA pretreatment or the specific pharmacological inhibitor Ru360 attenuated noise-induced loss of sensory hair cells and synaptic ribbons, wave I amplitudes, and NIHL in CBA/J mice. This protection was afforded, at least in part, through reduced cleavage of caspase 9 (CC9). Furthermore, MCU knockout mice on a hybrid genetic CD1 and C57/B6 background showed resistance to noise-induced seizures compared to wild-type littermates. Owing to the CD1 background, MCU knockouts and littermates suffer genetic high frequency hearing loss, but their IHCs remain intact. Noise-induced loss of IHC synaptic connections and reduction of auditory brainstem response (ABR) wave I amplitude were recovered in MCU knockout mice. These results suggest that cellular calcium influx during noise exposure leads to mitochondrial calcium overload via MCU and NCLX. Mitochondrial calcium overload, in turn, initiates cell death pathways and subsequent loss of hair cells and synaptic connections, resulting in NIHL

    The negative effects of obesity on heart, especially the electrophysiology of the heart

    No full text
    AbstractObesity is associated with ventricular arrhythmia and sudden cardiac death. Numerous studies have shown that obesity may have effects on the heart by affecting the ventricular re-polarisation (VR). As an effective detection method for VR the measurement of the QT interval has been extensively studied in obese patients (OP). This review aims to investigate the relationship between obesity and obesity-related diseases; including diabetes, hypertension and cardiovascular diseases (CVD). This review compares the advantages and disadvantages of different QT interval measurement methods, as well as explores the possible mechanisms of obesity leading to heart disease. Finally, it also reviews the feasibility of various weight loss methods to reverse the risk of obesity leading to heart disease is discussed

    Role of Cysteine-82 in the Catalytic Mechanism of Human S

    No full text

    Structure of a Human S

    No full text
    corecore