284 research outputs found

    The Relationship Between the Fibrinogen D Domain Self-Association/Cross-Linking Site (gammaXL) and the Fibrinogen Dusart Abnormality (Aalpha R554C-albumin): Clues to Thrombophilia in the Dusart Syndrome

    Get PDF
    Cross-linking of fibrinogen at its COOH-terminal gamma chain cross-linking site occurs in the presence of factor XIIIa due to self-association at a constitutive D domain site ( gammaXL ). We investigated the contribution of COOH-terminal regions of fibrinogen Aalpha chains to the gammaXL site by comparing the gamma chain cross-linking rate of intact fibrinogen (fraction I-2) with that of plasma fraction I-9, plasmic fraction I-9D, and plasmic fragment D1, which lack COOH-terminal Aalpha chain regions comprising approximately 100, approximately 390, and 413 residues, respectively. The cross-linking rates were I-2 \u3e I-9 \u3e 1-9D = D1, and indicated that the terminal 100 or more Aalpha chain residues enhance gammaXL site association. Fibrinogen Dusart, whose structural abnormality is in the COOH-terminal alphaC region of its Aalpha chain (Aalpha R554C-albumin), is associated with thrombophilia ( Dusart Syndrome ), and is characterized functionally by defective fibrin polymerization and clot structure, and reduced plasminogen binding and tPA-induced fibrinolysis. In the presence of XIIIa, the Dusart fibrinogen gamma chain cross-linking rate was about twice that of normal, but was normalized in proteolytic fibrinogen derivatives lacking the Aalpha chain abnormality, as was reduced plasminogen binding. Electron microscopy showed that albumin-bound Dusart fibrinogen alphaC regions were located in the vicinity of D domains, rather than at their expected tethered location near the fibrinogen E domain. In addition, there was considerable fibrinogen aggregation that was attributable to increased intermolecular COOH-terminal Aalpha chain associations promoted by untethered Dusart fibrinogen aC domains. We conclude that enhanced Dusart fibrinogen self-assembly is mediated through its abnormal alphaC domains, leads to increased gammaXL self-association and gamma chain cross-linking potential, and contributes to the thrombophilia that characterizes the Dusart Syndrome

    Cancer-selective, single agent chemoradiosensitising gold nanoparticles

    Get PDF
    Two nanometre gold nanoparticles (AuNPs), bearing sugar moieties and/or thiol-polyethylene glycol-amine (PEG-amine), were synthesised and evaluated for their in vitro toxicity and ability to radiosensitise cells with 220 kV and 6 MV X-rays, using four cell lines representing normal and cancerous skin and breast tissues. Acute 3 h exposure of cells to AuNPs, bearing PEG-amine only or a 50:50 ratio of alpha-galactose derivative and PEG-amine resulted in selective uptake and toxicity towards cancer cells at unprecedentedly low nanomolar concentrations. Chemotoxicity was prevented by co-administration of N-acetyl cysteine antioxidant, or partially prevented by the caspase inhibitor Z-VAD-FMK. In addition to their intrinsic cancer-selective chemotoxicity, these AuNPs acted as radiosensitisers in combination with 220 kV or 6 MV X-rays. The ability of AuNPs bearing simple ligands to act as cancer-selective chemoradiosensitisers at low concentrations is a novel discovery that holds great promise in developing low-cost cancer nanotherapeutics

    Emerging applications of nanotechnology for diagnosis and therapy of disease: a review

    Get PDF
    Nanotechnology is of increasing interest in the fields of medicine and physiology over recent years. Its application could considerably improve disease detection and therapy, and although the potential is considerable, there are still many challenges, which need to be addressed before it is accepted in routine clinical use. This review focuses on emerging applications that nanotechnology could enhance or provide new approaches in diagnoses and therapy. The main focus of recent research centres on targeted therapies and enhancing imaging; however, the introduction of nanomaterial into the human body must be controlled, as there are many issues with possible toxicity and long-term effects. Despite these issues, the potential for nanotechnology to provide new methods of combating cancer and other disease conditions is considerable. There are still key challenges for researchers in this field, including the means of delivery and targetting in the body to provide effective treatment for specific disease conditions. Nanoparticles are difficult to measure due to the size and physical properties; hence there is still a great need to improve physiological measurements method in the field to ascertain how effective their use is in the human subject. This review is a brief snapshot into the fast changing research field of measurement and physiological links to nanoparticle use and its potential in the future

    Multifunctional Gold Nanocarriers for Cancer Theranostics - From Bench to Bedside and Back Again?

    Get PDF

    Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection

    Get PDF
    Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes. © 2014 Gouzy et al

    EPMA position paper in cancer: current overview and future perspectives

    Get PDF

    Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

    Full text link
    • …
    corecore