577 research outputs found

    Evaluating the Effects of Scan Strategy on AM Annealed Fe-3Si steel through Understanding of Solidification Conditions and Thermal Stresses

    Get PDF
    Soft magnetic steels have seen recent adoption in additive manufacturing (AM) due to the prospect of reducing eddy currents and hysteresis losses through leveraging of complex geometries and microstructural control. An annealing step will be a significant step for these alloys produced in AM to increase grain size and further reduce hysteresis losses. In this study, thin wall Fe-3Si samples were produced using laser powder bed fusion (L-PBF) using two different scan strategies, with a subset of samples annealed at 1200°C for 5 minutes. The effects of the two different scan strategies on microstructure in the as-built and annealed samples were analyzed through EBSD where it was found that the scan strategy does have an effected on annealed microstructure. Thermal simulations using OpenFoam were used to rationalize the differences in microstructure formation between the two scan strategies for the as-built scan strategies by looking at the thermal gradients and solidification velocity, while explanations on why there is a difference in resulting annealed microstructure was made by looking at the grain orientation, size and misorientation. Further, thermal-mechanical simulations were conducted using Abaqus to see if differences in the resulting elastic and plastic strains due to differences in thermal stresses related to the two difference scan strategies could be a mechanism causing differences in annealed microstructure to occur

    Shapley Supercluster Survey: Ram-pressure stripping versus tidal interactions in the Shapley supercluster

    Get PDF
    We present two new examples of galaxies undergoing transformation in the Shapley supercluster core. These low-mass (M⋆∼0.4--1×1010M⋆∼0.4--1×1010 M⊙) galaxies are members of the two clusters SC 1329−313 (z ∼ 0.045) and SC 1327−312 (z ∼ 0.049). Integral-field spectroscopy complemented by imaging in the ugriK bands and in Hα narrow band is used to disentangle the effects of tidal interaction (TI) and ram-pressure stripping (RPS). In both galaxies, SOS 61086 and SOS 90630, we observe one-sided extraplanar ionized gas extending respectively ∼30 and ∼41 kpc in projection from their discs. The galaxies' gaseous discs are truncated, and the kinematics of the stellar and gas components are decoupled, supporting the RPS scenario. The emission of the ionized gas extends in the direction of a possible companion for both galaxies suggesting a TI. The overall gas velocity field of SOS 61086 is reproduced by ad hoc N-body/hydrodynamical simulations of RPS acting almost face-on and starting ∼250 Myr ago, consistent with the age of the young stellar populations. A link between the observed gas stripping and the cluster–cluster interaction experienced by SC 1329−313 and A3562 is suggested. Simulations of ram pressure acting almost edge-on are able to fully reproduce the gas velocity field of SOS 90630, but cannot at the same time reproduce the extended tail of outflowing gas. This suggests that an additional disturbance from a TI is required. This study adds a piece of evidence that RPS may take place in different environments with different impacts and witnesses the possible effect of cluster–cluster merger on RPS

    Intra-Ethnic Diversity in Hispanic Child Mortality, 1890-1910

    Get PDF
    The recent demography of the Hispanic population of the United States has received considerable attention, but historical perspective is more elusive partly due to data limitations. A nationally representative sample of the Hispanic population of the United States, based on the manuscripts of the 1910 census, now exists that includes 71,500 Hispanic-origin persons plus another 24,000 of their non-Hispanic neighbors. We estimate childhood mortality for 1890 to 1910, using indirect demographic methods of estimation and find infant and child mortality in the Hispanic population that was higher than for the non-Hispanic whites but slightly lower than for nonwhite, non-Hispanics (mostly African Americans). Hispanic rural, farm populations in California, Texas, and Arizona did the best, though still experiencing high mortality. The usual advantage of rural residence at the turn of the century holds outside of New Mexico and Florida.

    Use of a regional wall motion score to enhance risk stratification of patients receiving an implantable cardioverter-defibrillator

    Get PDF
    AbstractObjectives. We postulated that preoperative assessment of both regional wall motion and left ventricular ejection fraction would serve as an accurate prognostic indicator of long-term cardiac mortality and functional outcome in patients treated with an implantable cardioverter-defibrillator.Background. Long-term cardiac mortality has remained high in patients receiving an implantable cardioverter-defibrillator. The ability to risk stratify patients before defibrillator implantation is becoming increasingly important from a medical and economic standpoint.Methods. The hypothesis was retrospectively tested in 74 patients who had received an implantable cardioverterdefibrillator. Left ventricular ejection fraction and regional wall motion score, derived from centerline chord motion analysis, were calculated for each patient from the preoperative right anterior oblique contrast ventriculogram. Wall motion score was the only significant independent predictor of long-term cardiac mortality and functional status by multivariate analysis because of its enhanced prognostic capability in patients with an ejection fraction in the critical range of 30% to 40%.Results. Patients with an ejection fraction >40% had a 3-year cardiac mortality rate of 0% compared with 25% for those with an ejection fraction of 30% to 40% and 48% for those with an ejection fraction <30% (p < 0.05). Similarly, 75% of patients with an ejection fraction >40% were in New York Heart Association functional class I or II during long-term follow-up compared with 59% of those with an ejection fraction 30% to 40% and 29% of those with an ejection fraction <30%. Among patients with an ejection fraction of 30% to 40%, those with a wall motion score >16% had a 3-year cardiac mortality rate of 0% compared with 71% of those with a wall motion score ≤ 16% (p = 0.002). In addition, 86% of patients with a wall motion score >16% were in functional class I or II during long-term follow-up compared with 13% of those with a wall motion score ≤16% (p = 0.001).Conclusions. Long-term cardiac mortality and functional outcome in patients receiving an implantable cardioverterdefibrillator can be predicted if the left ventricular ejection fraction and regional wall motion score are measured preoperatively

    Regular breakfast consumption and type 2 diabetes risk markers in 9- to 10-year-old children in the child heart and health study in England (CHASE): a cross-sectional analysis.

    Get PDF
    BACKGROUND: Regular breakfast consumption may protect against type 2 diabetes risk in adults but little is known about its influence on type 2 diabetes risk markers in children. We investigated the associations between breakfast consumption (frequency and content) and risk markers for type 2 diabetes (particularly insulin resistance and glycaemia) and cardiovascular disease in children. METHODS AND FINDINGS: We conducted a cross-sectional study of 4,116 UK primary school children aged 9-10 years. Participants provided information on breakfast frequency, had measurements of body composition, and gave fasting blood samples for measurements of blood lipids, insulin, glucose, and glycated haemoglobin (HbA1c). A subgroup of 2,004 children also completed a 24-hour dietary recall. Among 4,116 children studied, 3,056 (74%) ate breakfast daily, 450 (11%) most days, 372 (9%) some days, and 238 (6%) not usually. Graded associations between breakfast frequency and risk markers were observed; children who reported not usually having breakfast had higher fasting insulin (percent difference 26.4%, 95% CI 16.6%-37.0%), insulin resistance (percent difference 26.7%, 95% CI 17.0%-37.2%), HbA1c (percent difference 1.2%, 95% CI 0.4%-2.0%), glucose (percent difference 1.0%, 95% CI 0.0%-2.0%), and urate (percent difference 6%, 95% CI 3%-10%) than those who reported having breakfast daily; these differences were little affected by adjustment for adiposity, socioeconomic status, and physical activity levels. When the higher levels of triglyceride, systolic blood pressure, and C-reactive protein for those who usually did not eat breakfast relative to those who ate breakfast daily were adjusted for adiposity, the differences were no longer significant. Children eating a high fibre cereal breakfast had lower insulin resistance than those eating other breakfast types (p for heterogeneity <0.01). Differences in nutrient intakes between breakfast frequency groups did not account for the differences in type 2 diabetes markers. CONCLUSIONS: Children who ate breakfast daily, particularly a high fibre cereal breakfast, had a more favourable type 2 diabetes risk profile. Trials are needed to quantify the protective effect of breakfast on emerging type 2 diabetes risk. Please see later in the article for the Editors' Summary

    An Interacting Galaxy Pair at the Origin of a Light Echo

    Get PDF
    In a low-density region of the Shapley supercluster we identified an interacting galaxy pair at redshift z = 0.04865 in which the Seyfert 2 nucleus of the main galaxy (ShaSS 073) is exciting an extended emission line region (EELR, ∼170 kpc^2) in the disk of the less massive companion (ShaSS 622). New integral-field spectroscopy and the multiband data set, spanning from far-ultraviolet to far-infrared and radio wavelengths, allowed us to obtain a detailed description of the ShaSS 622-073 system. The gas kinematics shows hints of interaction, although the overall velocity field shows a quite regular rotation in both galaxies, thus suggesting that we are observing their first encounter as confirmed by the estimated distance of 21 kpc between the two galaxy centers. The detected ∼ 2-3 kpc active galactic nucleus (AGN) outflow and the geometry of the EELR in ShaSS 622 support the presence of a hollow bicone structure. The status and sources of the ionization across the whole system have been analyzed through photoionization models and a Bayesian approach that prove a clear connection between the AGN and the EELR. The luminosity of the AGN (2.4×10^44 erg/s) is a factor of 20 lower than the power needed to excite the gas in the EELR (4.6 ×10^45 erg/s), indicating a dramatic fading of the AGN in the past 3×10^4 yr. ShaSS 073-622 provides all the ingredients listed in the recipe of a light echo where a highly-ionized region maintains memory of a preceding more energetic phase of a now-faded AGN. This is the first case of a light echo observed between two galaxies

    Targeted massively parallel sequencing of autism spectrum disorder-associated genes in a case control cohort reveals rare loss-of-function risk variants

    Get PDF
    BACKGROUND: Autism spectrum disorder (ASD) is highly heritable, yet genome-wide association studies (GWAS), copy number variation screens, and candidate gene association studies have found no single factor accounting for a large percentage of genetic risk. ASD trio exome sequencing studies have revealed genes with recurrent de novo loss-of-function variants as strong risk factors, but there are relatively few recurrently affected genes while as many as 1000 genes are predicted to play a role. As such, it is critical to identify the remaining rare and low-frequency variants contributing to ASD. METHODS: We have utilized an approach of prioritization of genes by GWAS and follow-up with massively parallel sequencing in a case-control cohort. Using a previously reported ASD noise reduction GWAS analyses, we prioritized 837 RefSeq genes for custom targeting and sequencing. We sequenced the coding regions of those genes in 2071 ASD cases and 904 controls of European white ancestry. We applied comprehensive annotation to identify single variants which could confer ASD risk and also gene-based association analysis to identify sets of rare variants associated with ASD. RESULTS: We identified a significant over-representation of rare loss-of-function variants in genes previously associated with ASD, including a de novo premature stop variant in the well-established ASD candidate gene RBFOX1. Furthermore, ASD cases were more likely to have two damaging missense variants in candidate genes than controls. Finally, gene-based rare variant association implicates genes functioning in excitatory neurotransmission and neurite outgrowth and guidance pathways including CACNAD2, KCNH7, and NRXN1. CONCLUSIONS: We find suggestive evidence that rare variants in synaptic genes are associated with ASD and that loss-of-function mutations in ASD candidate genes are a major risk factor, and we implicate damaging mutations in glutamate signaling receptors and neuronal adhesion and guidance molecules. Furthermore, the role of de novo mutations in ASD remains to be fully investigated as we identified the first reported protein-truncating variant in RBFOX1 in ASD. Overall, this work, combined with others in the field, suggests a convergence of genes and molecular pathways underlying ASD etiology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-015-0034-z) contains supplementary material, which is available to authorized users

    A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide Association Studies (GWAS) have proved invaluable for the identification of disease susceptibility genes. However, the prioritization of candidate genes and regions for follow-up studies often proves difficult due to false-positive associations caused by statistical noise and multiple-testing. In order to address this issue, we propose the novel GWAS noise reduction (GWAS-NR) method as a way to increase the power to detect true associations in GWAS, particularly in complex diseases such as autism.</p> <p>Methods</p> <p>GWAS-NR utilizes a linear filter to identify genomic regions demonstrating correlation among association signals in multiple datasets. We used computer simulations to assess the ability of GWAS-NR to detect association against the commonly used joint analysis and Fisher's methods. Furthermore, we applied GWAS-NR to a family-based autism GWAS of 597 families and a second existing autism GWAS of 696 families from the Autism Genetic Resource Exchange (AGRE) to arrive at a compendium of autism candidate genes. These genes were manually annotated and classified by a literature review and functional grouping in order to reveal biological pathways which might contribute to autism aetiology.</p> <p>Results</p> <p>Computer simulations indicate that GWAS-NR achieves a significantly higher classification rate for true positive association signals than either the joint analysis or Fisher's methods and that it can also achieve this when there is imperfect marker overlap across datasets or when the closest disease-related polymorphism is not directly typed. In two autism datasets, GWAS-NR analysis resulted in 1535 significant linkage disequilibrium (LD) blocks overlapping 431 unique reference sequencing (RefSeq) genes. Moreover, we identified the nearest RefSeq gene to the non-gene overlapping LD blocks, producing a final candidate set of 860 genes. Functional categorization of these implicated genes indicates that a significant proportion of them cooperate in a coherent pathway that regulates the directional protrusion of axons and dendrites to their appropriate synaptic targets.</p> <p>Conclusions</p> <p>As statistical noise is likely to particularly affect studies of complex disorders, where genetic heterogeneity or interaction between genes may confound the ability to detect association, GWAS-NR offers a powerful method for prioritizing regions for follow-up studies. Applying this method to autism datasets, GWAS-NR analysis indicates that a large subset of genes involved in the outgrowth and guidance of axons and dendrites is implicated in the aetiology of autism.</p

    Relative energetics and structural properties of zirconia using a self-consistent tight-binding model

    Full text link
    We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the cation d orbitals. This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a greater contribution than the polarizability to the energy differences between phases. Results for elastic constants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and compared with some experimental data and first-principles calculations. We suggest that the model will be useful for studying finite temperature effects by means of molecular dynamics.Comment: to be published in Physical Review B (1 march 2000
    • …
    corecore