7,216 research outputs found

    Permeability evolution across carbonate hosted normal fault zones

    Get PDF
    Acknowledgements: The authors would like to thank Total E&P and BG Group for project funding and support, and the Industry Technology Facilitator for facilitating the collaborative development (grant number 3322PSD). The authors would also like to express their gratitude to the Aberdeen Formation Evaluation Society and the College of Physical Sciences at the University of Aberdeen for partial financial support. Raymi Castilla (Total E&P), Fabrizio Agosta and Cathy Hollis are also thanked for their constructive comments and suggestions to improve the standard of this manuscript as are John Still and Colin Taylor (University of Aberdeen) for technical assistance in the laboratory. Piero Gianolla is thanked for his editorial handling of the manuscript.Peer reviewedPostprin

    Assessment of the dimensionality of the Wijma delivery expectancy/experience questionnaire using factor analysis and Rasch analysis

    Get PDF
    Background: Fear of childbirth has negative consequences for a woman's physical and emotional wellbeing. The most commonly used measurement tool for childbirth fear is the Wijma Delivery Expectancy Questionnaire (WDEQ-A). Although originally conceptualized as unidimensional, subsequent investigations have suggested it is multidimensional. This study aimed to undertake a detailed psychometric assessment of the WDEQ-A; exploring the dimensionality and identifying possible subscales that may have clinical and research utility. Methods: WDEQ-A was administered to a sample of 1410 Australian women in mid-pregnancy. The dimensionality of WDEQ-A was explored using exploratory (EFA) and confirmatory factor analysis (CFA), and Rasch analysis. Results: EFA identified a four factor solution. CFA failed to support the unidimensional structure of the original WDEQ-A, but confirmed the four factor solution identified by EFA. Rasch analysis was used to refine the four subscales (Negative emotions: five items; Lack of positive emotions: five items; Social isolation: four items; Moment of birth: three items). Each WDEQ-A Revised subscale showed good fit to the Rasch model and adequate internal consistency reliability. The correlation between Negative emotions and Lack of positive emotions was strong, however Moment of birth and Social isolation showed much lower intercorrelations, suggesting they should not be added to create a total score. Conclusion: This study supports the findings of other investigations that suggest the WDEQ-A is multidimensional and should not be used in its original form. The WDEQ-A Revised may provide researchers with a more refined, psychometrically sound tool to explore the differential impact of aspects of childbirth fear.Full Tex

    A Herschel Study of 24 micron-Selected AGNs and Their Host Galaxies

    Get PDF
    We present a sample of 290 24-micron-selected active galactic nuclei (AGNs) mostly at z ~ 0.3 -- 2.5, within 5.2 square degrees distributed as 25' X 25' fields around each of 30 galaxy clusters in the Local Cluster Substructure Survey (LoCuSS). The sample is nearly complete to 1 mJy at 24 microns, and has a rich multi-wavelength set of ancillary data; 162 are detected by Herschel. We use spectral templates for AGNs, stellar populations, and infrared emission by star forming galaxies to decompose the spectral energy distributions (SEDs) of these AGNs and their host galaxies, and estimate their star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses. The set of templates is relatively simple: a standard Type-1 quasar template; another for the photospheric output of the stellar population; and a far infrared star-forming template. For the Type-2 AGN SEDs, we substitute templates including internal obscuration, and some Type-1 objects require a warm component (T > 50 K). The individually Herschel- detected Type-1 AGNs and a subset of 17 Type-2 ones typically have luminosities > 10^{45} ergs/s, and supermassive black holes of ~ 3 X 10^8 Msun emitting at ~ 10% of the Eddington rate. We find them in about twice the numbers of AGN identified in SDSS data in the same fields, i.e., they represent typical high luminosity AGN, not an infrared-selected minority. These AGNs and their host galaxies are studied further in an accompanying paper

    Using citizen science data for conservation planning: methods for quality control and downscaling for use in stochastic patch occupancy modelling

    Get PDF
    The Incidence Function Model (IFM) has been put forward as a tool for assessing conservation plans. A key benefit of the IFM is low data requirements: widely available species occurrence data and information about land cover. Citizen science is a promising source of such data; however, to use these data in the IFM there are typically two problems. First, the spatial resolution is too coarse, but existing approaches to downscaling species data tend not to extend to patch level (as required by the IFM). Second, widely available citizen science data typically report species' presences only. We devise ten different downscaling methods based on theoretical ecological relationships (the species–area relationship and the distance decay of similarity), and test them against each other. The better performing downscaling methods were based on patch area, rather than distance from other occupied patches. These methods allow data at a coarse resolution to be used in the IFM for comparing conservation management and development plans. Further field testing is required to establish the degree to which results of these new methods can be treated as definitive spatially-explicit predictions. To address the issue of false absences, we present a method to estimate the probability that all species have been listed (and thus that a species' absence from the list represents a true absence), using the species-accumulation curve. This measure of confidence in absence helps both to objectively identify a habitat network for fitting the IFM, and to target areas for further species recording

    Numerical Modelling of Instantaneous Plate Tectonics

    Get PDF
    Assuming lithospheric plates to be rigid, we systematically invert 68 spreading rates, 62 fracture zones trends and 10^6 earthquake slip vectors simultaneously to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable. We then invert the trends of 20 linear island chains and aseismic ridges under the assumptions that they represent the directions of plate motions over a set of hot spots fixed with respect to each other. We conclude that these hot spots have had no significant relative motions in the last 10 My

    Analysis of Bidirectional Associative Memory using SCSNA and Statistical Neurodynamics

    Full text link
    Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical-mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.Comment: 13 pages, 4 figure

    Star formation in the massive cluster merger Abell 2744

    Full text link
    We present a comprehensive study of star-forming (SF) galaxies in the HST Frontier Field recent cluster merger A2744 (z=0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFR{UV+IR}=343+/-10 Msun/yr. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFR{UV+IR}=201+/-9 Msun/yr. Focussing on obscured star formation, this core region exhibits a total SFR{IR}=138+/-8 Msun/yr, a mass-normalised SFR{IR} of Sigma{SFR}=11.2+/-0.7 Msun/yr per 10^14 Msun and a fraction of IR-detected SF galaxies f{SF}=0.080(+0.010,-0.037). Overall, the cluster population at z~0.3 exhibits significant intrinsic scatter in IR properties (total SFR{IR}, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFR{UV}/SFR{IR} up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.Comment: Accepted by MNRAS. 12 pages, 7 figures (high resolution versions of Figs. 1 & 2 are available in the published PDF

    An approach to computing downward closures

    Full text link
    The downward closure of a word language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of any language is regular. While the downward closure appears to be a powerful abstraction, algorithms for computing a finite automaton for the downward closure of a given language have been established only for few language classes. This work presents a simple general method for computing downward closures. For language classes that are closed under rational transductions, it is shown that the computation of downward closures can be reduced to checking a certain unboundedness property. This result is used to prove that downward closures are computable for (i) every language class with effectively semilinear Parikh images that are closed under rational transductions, (ii) matrix languages, and (iii) indexed languages (equivalently, languages accepted by higher-order pushdown automata of order 2).Comment: Full version of contribution to ICALP 2015. Comments welcom
    corecore