22 research outputs found

    A systematic review of the effects of psychiatric medications on social cognition

    Get PDF
    INTRODUCTION: Social cognition is an important area of mental functioning relevant to psychiatric disorders and social functioning, that may be affected by psychiatric drug treatments. The aim of this review was to investigate the effects of medications with sedative properties, on social cognition. METHOD: This systematic review included experimental and neuroimaging studies investigating drug effects on social cognition. Data quality was assessed using a modified Downs and Black checklist (Trac et al. CMAJ 188: E120-E129, 2016). The review used narrative synthesis to analyse the data. RESULTS: 40 papers were identified for inclusion, 11 papers investigating benzodiazepine effects, and 29 investigating antipsychotic effects, on social cognition. Narrative synthesis showed that diazepam impairs healthy volunteer’s emotion recognition, with supporting neuroimaging studies showing benzodiazepines attenuate amygdala activity. Studies of antipsychotic effects on social cognition gave variable results. However, many of these studies were in patients already taking medication, and potential practice effects were identified due to short-term follow-ups. CONCLUSION: Healthy volunteer studies suggest that diazepam reduces emotional processing ability. The effects of benzodiazepines on other aspects of social cognition, as well as the effects of antipsychotics, remain unclear. Interpretations of the papers in this review were limited by variability in measures, small sample sizes, and lack of randomisation. More robust studies are necessary to evaluate the impact of these medications on social cognition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12888-021-03545-z

    Implementation, adoption and perceptions of telemental health during the COVID-19 pandemic: a systematic review

    Get PDF
    BACKGROUND: Early in 2020, mental health services had to rapidly shift from face-to-face models of care to delivering the majority of treatments remotely (by video or phone call or occasionally messaging) due to the COVID-19 pandemic. This resulted in several challenges for staff and patients, but also in benefits such as convenience or increased access for people with impaired mobility or in rural areas. There is a need to understand the extent and impacts of telemental health implementation, and barriers and facilitators to its effective and acceptable use. This is relevant both to future emergency adoption of telemental health, and to debates on its future use in routine mental health care. OBJECTIVE: To investigate the adoption and impacts of telemental health approaches during the COVID-19 Pandemic, and facilitators and barriers to optimal implementation. METHODS: Four databases (PubMed, PsycINFO, CINAHL and Web of Science) were searched for primary research relating to remote working, mental health care, and the COVID-19 pandemic. Preprint servers were also searched. Results of studies were synthesised using framework synthesis. RESULTS: A total of 77 papers met our inclusion criteria. In most studies, the majority of contacts could be transferred to a remote form during the pandemic, and good acceptability to service users and clinicians tended to be reported, at least where the alternative to remote contacts was interrupting care. However, a range of impediments to dealing optimal care by this means were also identified. CONCLUSIONS: Implementation of telemental health allowed some continuing support to the majority of service users during the COVID-19 pandemic and has value in an emergency situation. However, not all service users can be reached by this means, and better evidence is now needed on long-term impacts on therapeutic relationships and quality of care, and on impacts on groups at risk of digital exclusion and how to mitigate these. CLINICALTRIAL

    Dis3L2 regulates cell proliferation and tissue growth though a conserved mechanism

    Get PDF
    Dis3L2 is a highly conserved 3’-5’ exoribonuclease which is mutated in the human overgrowth disorders Perlman syndrome and Wilms’ tumour of the kidney. Using Drosophila melanogaster as a model system, we have generated a new dis3L2 null mutant together with wild-type and nuclease-dead genetic lines in Drosophila to demonstrate that the catalytic activity of Dis3L2 is required to control cell proliferation. To understand the cellular pathways regulated by Dis3L2 to control proliferation, we used RNA-seq on dis3L2 mutant wing discs to show that the imaginal disc growth factor Idgf2 is responsible for driving the wing overgrowth. IDGFs are conserved proteins homologous to human chitinase-like proteins such as CHI3L1/YKL-40 which are implicated in tissue regeneration as well as cancers including colon cancer and non-small cell lung cancer. We also demonstrate that loss of DIS3L2 in human kidney HEK-293T cells results in cell proliferation, illustrating the conservation of this important cell proliferation pathway. Using these human cells, we show that loss of DIS3L2 results in an increase in the PI3-Kinase/AKT signalling pathway, which we subsequently show to contribute towards the proliferation phenotype in Drosophila. Our work therefore provides the first mechanistic explanation for DIS3L2-induced overgrowth in humans and flies and identifies an ancient proliferation pathway controlled by Dis3L2 to regulate cell proliferation and tissue growth

    M\ue9moire sur les polypiers appartenant \ue0 la famille des oculinides, au groupe interm\ue9diaire des Pseudoastr\ue9ides et \ue0 la famille des Fongides

    No full text
    Volume: 29Start Page: 67End Page: 7

    Genome-wide analyses of XRN1-sensitive targets in osteosarcoma cells identify disease-relevant transcripts containing G-rich motifs

    No full text
    XRN1 is a highly conserved exoribonuclease which degrades uncapped RNAs in a 5'-3' direction. Degradation of RNAs by XRN1 is important in many cellular and developmental processes and is relevant to human disease. Studies in D. melanogaster demonstrate that XRN1 can target specific RNAs, which have important consequences for developmental pathways. Osteosarcoma is a malignancy of the bone and accounts for 2% of all pediatric cancers worldwide. Five-year survival of patients has remained static since the 1970s and therefore furthering our molecular understanding of this disease is crucial. Previous work has shown a down-regulation of XRN1 in osteosarcoma cells; however, the transcripts regulated by XRN1 which might promote osteosarcoma remain elusive. Here, we confirm reduced levels of XRN1 in osteosarcoma cell lines and patient samples and identify XRN1-sensitive transcripts in human osteosarcoma cells. Using RNA-seq in XRN1-knockdown SAOS-2 cells, we show that 1178 genes are differentially regulated. Using a novel bioinformatic approach, we demonstrate that 134 transcripts show characteristics of direct post-transcriptional regulation by XRN1. Long noncoding RNAs (lncRNAs) are enriched in this group, suggesting that XRN1 normally plays an important role in controlling lncRNA expression in these cells. Among potential lncRNAs targeted by XRN1 is HOTAIR, which is known to be up-regulated in osteosarcoma and contributes to disease progression. We have also identified G-rich and GU motifs in post-transcriptionally regulated transcripts which appear to sensitize them to XRN1 degradation. Our results therefore provide significant insights into the specificity of XRN1 in human cells which are relevant to disease
    corecore