294 research outputs found
Phonon anomalies at the valence transition of SmS : An inelasticX-ray scattering study under pressure
The phonon dispersion curve of SmS under pressure was studied by inelastic
x-ray scattering around the pressure-induced valence transition. A significant
softening of the longitudinal acoustic modes propagating along the [111]
direction was observed spanning a wide region from
() up to the zone boundary as
SmS becomes metallic. The largest softening occurs at the zone boundary and
stays stable up to the highest measured pressure of 80 kbar while a gradual
hardening of the low modes simultaneously appears. This phonon spectrum
indicates favorable conditions for the emergence of pressure-induced
superconductivity in SmS.Comment: 4 pages, 3 figure
Thermodynamics of volume collapse transitions in cerium and related compounds
We present a non-linear elastic model of a coherent transition with
discontinuous volume change in an isotropic solid. The model reproduces the
anomalous thermodynamics typical of coherent equilibrium including intrinsic
hysteresis (for a pressure driven experiment) and a negative bulk modulus. The
novelty of the model is that the statistical mechanics solution can be easily
worked out. We find that coherency leads to an infinite-range density--density
interaction, which drives classical critical behavior. The pressure width of
the hysteresis loop shrinks with increasing temperature, ending at a critical
point at a temperature related to the shear modulus. The bulk modulus softens
with a 1/2 exponent at the transition even far from the critical point. Many
well known features of the phase diagram of Ce and related systems are
explained by the model.Comment: Acta Materialia, in pres
Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection
Cross-kingdom small RNA trafficking between hosts and microbes modulates gene expression in the interacting partners during infection. However, whether other RNAs are also transferred is unclear. Here, we discover that host plant Arabidopsis thaliana delivers mRNAs via extracellular vesicles (EVs) into the fungal pathogen Botrytis cinerea. A fluorescent RNA aptamer reporter Broccoli system reveals host mRNAs in EVs and recipient fungal cells. Using translating ribosome affinity purification profiling and polysome analysis, we observe that delivered host mRNAs are translated in fungal cells. Ectopic expression of two transferred host mRNAs in B. cinerea shows that their proteins are detrimental to infection. Arabidopsis knockout mutants of the genes corresponding to these transferred mRNAs are more susceptible. Thus, plants have a strategy to reduce infection by transporting mRNAs into fungal cells. mRNAs transferred from plants to pathogenic fungi are translated to compromise infection, providing knowledge that helps combat crop diseases.</p
Absorption of Nasal and Bronchial Fluids: Precision Sampling of the Human Respiratory Mucosa and Laboratory Processing of Samples.
The methods of nasal absorption (NA) and bronchial absorption (BA) use synthetic absorptive matrices (SAM) to absorb the mucosal lining fluid (MLF) of the human respiratory tract. NA is a non-invasive technique which absorbs fluid from the inferior turbinate, and causes minimal discomfort. NA has yielded reproducible results with the ability to frequently repeat sampling of the upper airway. By comparison, alternative methods of sampling the respiratory mucosa, such as nasopharyngeal aspiration (NPA) and conventional swabbing, are more invasive and may result in greater data variability. Other methods have limitations, for instance, biopsies and bronchial procedures are invasive, sputum contains many dead and dying cells and requires liquefaction, exhaled breath condensate (EBC) contains water and saliva, and lavage samples are dilute and variable. BA can be performed through the working channel of a bronchoscope in clinic. Sampling is well tolerated and can be conducted at multiple sites in the airway. BA results in MLF samples being less dilute than bronchoalveolar lavage (BAL) samples. This article demonstrates the techniques of NA and BA, as well as the laboratory processing of the resulting samples, which can be tailored to the desired downstream biomarker being measured. These absorption techniques are useful alternatives to the conventional sampling techniques used in clinical respiratory research
Hepatocytes Sensitized to Tumor Necrosis Factor-α Cytotoxicity Undergo Apoptosis through Caspase-dependent and Caspase-independent Pathways
Hepatocytes can be sensitized to tumor necrosis factor (TNF)-alpha toxicity by repression of NF-kappaB activation or inhibition of RNA synthesis. To determine whether both forms of sensitization lead to TNF-alpha cytotoxicity by similar mechanisms, TNF-alpha-induced cell death in RALA255-10G hepatocytes was examined following infection with an adenovirus, Ad5IkappaB, that blocks NF-kappaB activation or following cotreatment with actinomycin D (ActD). TNF-alpha treatment of Ad5IkappaB-infected cells resulted in 44% cell death within 6 h. ActD/TNF-alpha induced no death within 6 h but did lead to 37% cell death by 24 h. In both instances, cell death occurred by apoptosis and was associated with caspase activation, although caspase activation in ActD-sensitized cells was delayed. CrmA and chemical caspase inhibitors blocked Ad5IkappaB/TNF-alpha-induced cell death but did not inhibit ActD/TNF-alpha-induced apoptosis. A Fas-associated protein with death domain (FADD) dominant negative decreased Ad5IkappaB/TNF-alpha- and ActD/TNF-alpha-induced cell death by 81 and 47%, respectively. However, downstream events differed, since Ad5IkappaB/TNF-alpha but not ActD/TNF-alpha treatment caused mitochondrial cytochrome c release. These results suggest that NF-kappaB inactivation and inhibition of RNA synthesis sensitize RALA255-10G hepatocytes to TNF-alpha toxicity through distinct cell death pathways that diverge below the level of FADD. ActD-induced hepatocyte sensitization to TNF-alpha cytotoxicity occurs through a FADD-dependent, caspase-independent pathway of apoptosis
Autoantibodies, Antigen-Autoantibody Complexes and Antigens Complement CA125 for Early Detection of Ovarian Cancer
BACKGROUND: Multiple antigens, autoantibodies (AAb), and antigen-autoantibody (Ag-AAb) complexes were compared for their ability to complement CA125 for early detection of ovarian cancer.
METHODS: Twenty six biomarkers were measured in a single panel of sera from women with early stage (I-II) ovarian cancers (n = 64), late stage (III-IV) ovarian cancers (186), benign pelvic masses (200) and from healthy controls (502), and then split randomly (50:50) into a training set to identify the most promising classifier and a validation set to compare its performance to CA125 alone.
RESULTS: Eight biomarkers detected ≥ 8% of early stage cases at 98% specificity. A four-biomarker panel including CA125, HE4, HE4 Ag-AAb and osteopontin detected 75% of early stage cancers in the validation set from among healthy controls compared to 62% with CA125 alone (p = 0.003) at 98% specificity. The same panel increased sensitivity for distinguishing early-stage ovarian cancers from benign pelvic masses by 25% (p = 0.0004) at 95% specificity. From 21 autoantibody candidates, 3 AAb (anti-p53, anti-CTAG1 and annt-Il-8) detected 22% of early stage ovarian cancers, potentially lengthening lead time prior to diagnosis.
CONCLUSION: A four biomarker panel achieved greater sensitivity at the same specificity for early detection of ovarian cancer than CA125 alone
SIK2 inhibition enhances PARP inhibitor activity synergistically in ovarian and triple-negative breast cancers
Poly(ADP-ribose) polymerase inhibitors (PARP inhibitors) have had an increasing role in the treatment of ovarian and breast cancers. PARP inhibitors are selectively active in cells with homologous recombination DNA repair deficiency caused by mutations in BRCA1/2 and other DNA repair pathway genes. Cancers with homologous recombination DNA repair proficiency respond poorly to PARP inhibitors. Cancers that initially respond to PARP inhibitors eventually develop drug resistance. We have identified salt-inducible kinase 2 (SIK2) inhibitors, ARN3236 and ARN3261, which decreased DNA double-strand break (DSB) repair functions and produced synthetic lethality with multiple PARP inhibitors in both homologous recombination DNA repair deficiency and proficiency cancer cells. SIK2 is required for centrosome splitting and PI3K activation and regulates cancer cell proliferation, metastasis, and sensitivity to chemotherapy. Here, we showed that SIK2 inhibitors sensitized ovarian and triple-negative breast cancer (TNBC) cells and xenografts to PARP inhibitors. SIK2 inhibitors decreased PARP enzyme activity and phosphorylation of class-IIa histone deacetylases (HDAC4/5/7). Furthermore, SIK2 inhibitors abolished class-IIa HDAC4/5/7–associated transcriptional activity of myocyte enhancer factor-2D (MEF2D), decreasing MEF2D binding to regulatory regions with high chromatin accessibility in FANCD2, EXO1, and XRCC4 genes, resulting in repression of their functions in the DNA DSB repair pathway. The combination of PARP inhibitors and SIK2 inhibitors provides a therapeutic strategy to enhance PARP inhibitor sensitivity for ovarian cancer and TNBC
Conditional Loss of ErbB3 Delays Mammary Gland Hyperplasia Induced by Mutant PIK3CA without Affecting Mammary Tumor Latency, Gene Expression, or Signaling
Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphatidylinositol-3 kinase (PI3K), have been shown to transform mammary epithelial cells (MECs). Studies suggest this transforming activity requires binding of mutant p110α via p85 to phosphorylated YXXM motifs in activated receptor tyrosine kinases (RTKs) or adaptors. Using transgenic mice, we examined if ErbB3, a potent activator of PI3K, is required for mutant PIK3CA-mediated transformation of MECs. Conditional loss of ErbB3 in mammary epithelium resulted in a delay of PIK3CAH1047R-dependent mammary gland hyperplasia, but tumor latency, gene expression and PI3K signaling were unaffected. In ErbB3-deficient tumors, mutant PI3K remained associated with several tyrosyl phosphoproteins, potentially explaining the dispensability of ErbB3 for tumorigenicity and PI3K activity. Similarly, inhibition of ErbB RTKs with lapatinib did not affect PI3K signaling in PIK3CAH1047R-expressing tumors. However, the p110α-specific inhibitor BYL719, in combination with lapatinib impaired mammary tumor growth and PI3K signaling more potently than BYL719 alone. Further, co-inhibition of p110α and ErbB3 potently suppressed proliferation and PI3K signaling in human breast cancer cells harboring PIK3CAH1047R. These data suggest that PIK3CAH1047R-driven tumor growth and PI3K signaling can occur independently of ErbB RTKs. However, simultaneous blockade of p110α and ErbB RTKs results in superior inhibition of PI3K and mammary tumor growth, suggesting a rational therapeutic combination against breast cancers harboring PIK3CA activating mutations
- …