2,273 research outputs found
Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal Conductivity
The thermal conductivity is calculated with the Helfand-moment method in the
Lennard-Jones fluid near the triple point. The Helfand moment of thermal
conductivity is here derived for molecular dynamics with periodic boundary
conditions. Thermal conductivity is given by a generalized Einstein relation
with this Helfand moment. We compute thermal conductivity by this new method
and compare it with our own values obtained by the standard Green-Kubo method.
The agreement is excellent.Comment: Submitted to the Journal of Chemical Physic
Dopant site selectivity in BaCe0.85M0.15O3-δ by extended x-ray absorption fine structure
Rare earth doped BaCeO3 has been widely investigated as a proton conducting material. Trivalent dopants are generally assumed to fully occupy the Ce4+-site, and thereby introduce oxygen vacancies into the perovskite structure. Recent studies indicate the possibility of partial dopant incorporation onto the Ba2+-site concomitant with BaO evaporation, reducing the oxygen vacancy content. Because proton incorporation requires, as a first step, the generation of oxygen vacancies such dopant partitioning is detrimental to protonic conductivity. A quantitative Extended X-ray Absorption Fine Structure (EXAFS) study of BaCe0.85M0.15O3-δ (M=Yb,Gd) is presented here along with complementary x-ray powder diffraction and electron probe chemical analyses. The EXAFS results demonstrate that as much as 4.6% of the ytterbium and 7.2% of the gadolinium intended for incorporation onto the Ce site, in fact, resides on the Ba site. The results are in qualitative agreement with the diffraction and chemical analyses, which additionally show an even greater extent of Nd incorporation on the Ba site
Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity
We propose a new method, the Helfand-moment method, to compute the shear
viscosity by equilibrium molecular dynamics in periodic systems. In this
method, the shear viscosity is written as an Einstein-like relation in terms of
the variance of the so-called Helfand moment. This quantity, is modified in
order to satisfy systems with periodic boundary conditions usually considered
in molecular dynamics. We calculate the shear viscosity in the Lennard-Jones
fluid near the triple point thanks to this new technique. We show that the
results of the Helfand-moment method are in excellent agreement with the
results of the standard Green-Kubo method.Comment: Submitted to the Journal of Chemical Physic
Defect chemistry and transport properties of BaxCe0.85M0.15O3-d
The site-incorporation mechanism of M3+ dopants into A2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A2+-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B4+-site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen-vacancy content, in turn, is relevant to proton-conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. We propose here, on the basis of x-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, and alternating current impedance spectroscopy, that nominally B-site doped barium cerate can exhibit dopant partitioning as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. Specific materials examined are BaxCe0.85M0.15O3-d (x = 0.85 - 1.20; M = Nd, Gd, Yb). The compositional limits for the maximum A-site incorporation are experimentally determined to be: (Ba0.919Nd0.081)(Ce0.919Nd0.081)O3, (Ba0.974Gd0.026)(Ce0.872Gd0.128)O2.875, and Ba(Ce0.85Yb0.15)O2.925. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs
Nanoscale alpha-structural domains in the phonon-glass thermoelectric material beta-Zn4Sb3
A study of the local atomic structure of the promising thermoelectric material beta-Zn4Sb3, using atomic pair distribution function (PDF) analysis of x-ray- and neutron-diffraction data, suggests that the material is nanostructured. The local structure of the beta phase closely resembles that of the low-temperature alpha phase. The alpha structure contains ordered zinc interstitial atoms which are not long range ordered in the beta phase. A rough estimate of the domain size from a visual inspection of the PDF is <~10 nm. It is probable that the nanoscale domains found in this study play an important role in the exceptionally low thermal conductivity of beta-Zn4Sb3
Promoting global watershed management towards rural communities: the May Zeg-zeg initiativeLength: pp.192-195
Watershed managementRural development
Evidence for compact cooperatively rearranging regions in a supercooled liquid
We examine structural relaxation in a supercooled glass-forming liquid
simulated by NVE molecular dynamics. Time correlations of the total kinetic
energy fluctuations are used as a comprehensive measure of the system's
approach to the ergodic equilibrium. We find that, under cooling, the total
structural relaxation becomes delayed as compared with the decay of the
component of the intermediate scattering function corresponding to the main
peak of the structure factor. This observation can be explained by collective
movements of particles preserving many-body structural correlations within
compact 3D cooperatively rearranging regions.Comment: 8 pages, 4 figure
Profile blunting and flow blockage in a yield stress fluid: A molecular dynamics study
The flow of a simple glass forming system (a 80:20 binary Lennard-Jones
mixture) through a planar channel is studied via molecular dynamics
simulations. The flow is driven by an external body force similar to gravity.
Previous studies show that the model exhibits both a static [Varnik et al. J.
Chem. Phys. 120, 2788 (2004)] and a dynamic [F. Varnik and O. Henrich Phys.
Rev. B 73, 174209 (2006)] yield stress in the glassy phase. \blue{These
observations are corroborated by the present work, where we investigate how the
presence of a yield stress may affect the system behavior in a Poiseuille-type
flow geometry.} In particular, we observe a blunted velocity profile across the
channel: A relatively wide region in the channel center flows with a constant
velocity (zero shear rate) followed by a non linear change of the shear rate as
the walls are approached. The observed velocity gradients are compared to those
obtained from the knowledge of the shear stress across the channel and the
flow-curves (stress versus shear rate), the latter being determined in our
previous simulations of homogeneous shear flow. Furthermore, using the value of
the (dynamic) yield stress known from previous simulations, we estimate the
threshold body force for a complete arrest of the flow. Indeed, a blockage is
observed as the imposed force falls below this threshold value. Small but
finite shear rates are observed at stresses above the dynamic but below the
static yield stress. We discuss the possible role of the \blue{stick-slip like
motion} for this observation.Comment: 22 pages, 8 figure
Irreversibility in response to forces acting on graphene sheets
The amount of rippling in graphene sheets is related to the interactions with
the substrate or with the suspending structure. Here, we report on an
irreversibility in the response to forces that act on suspended graphene
sheets. This may explain why one always observes a ripple structure on
suspended graphene. We show that a compression-relaxation mechanism produces
static ripples on graphene sheets and determine a peculiar temperature ,
such that for the free-energy of the rippled graphene is smaller than
that of roughened graphene. We also show that depends on the structural
parameters and increases with increasing sample size.Comment: 4 pages, 4 Figure
- …