54 research outputs found

    Nano-drug Clinical Trials: Informed Consent and Risk Management Through Blockchain

    Get PDF
    Drug bearing nano-shells that can be utilized for targeted drug delivery have been shown to enhance the therapeutic index by increasing the dug concentration in diseased tissue and reducing the toxicity in normal tissue.  The controllability of the drug bearing shell size provides predictability measure for the amount of drug payload per shell which improves the administration of the therapeutic dose.  The FDA approved different formulations for clinical use in metastatic and recurrent breast cancer, among other diseases.  At the moment, some of these formulations are the subject of international clinical trials.  Informed consent is legally mandated in administering drug bearing nano-shells.  The risks of the new formulations, as with all new technologies, are not well known and are continue to be a subject of intensive research, thus exacerbating the existing informed consent legal issues, thus exacerbating the existing informed consent legal issues.  This short essay focuses on proposing a framework to mitigate liabilities administering a new formulation on nano-enabled drug carriers particularly when uncertainties of the benefits and damages are not fully known.

    COVID-19 Vaccines and their Pitfalls in Informed Consent

    Get PDF
    The World Health Organization declared the coronavirus (COVID-19) pandemic as a global health crisis. The search for a coronavirus vaccine escalated to a global competition. Drugs for other diseases as well as new formulations are proposed as potential candidates for the treatment or intervention of coronavirus. Almost all pharmaceutically able countries are pursuing potential vaccines. At the time of writing this article, two vaccines are already marketed and tested with promising interim results. Both vaccines use messenger RNA (mRNA) encapsulated in a lipid nanocarrier. Under ordinary circumstances, clinical trial authorizations oblige sponsors to disclose all risks to volunteers in order to formulate an informed knowledgeable decision. This however has been subject to exceptions during the pandemic. The mRNA-based vaccine has been rushed in unprecedented record speed to human clinical efficacy evaluation. This raises a number of questions related to the validity of volunteers’ free and informed consent. The present article argues that informed consent of all risks as well as the protection of volunteers’ personal data constitute concrete obligations under human rights law that cannot be derogated from in times of emergency – such as the COVID-19 pandemic. Furthermore, it suggests a risk governance framework through blockchain for international vaccine testing clinical trials

    Conductive Polymer Blends and Their Use in Memory Devices

    Get PDF
    The aim of this project is to synthesize and characterize conductive polymers made out of blending nonconductive polymers with ionic liquids. An application to demonstrate the use of these novel conductive polymers is to create an organic memory device. Attempts to synthesize conductive polymers have been reported in the literature; several of these approaches include doping a polymer with arsenic or iodine based dopant. In this work, ionic liquids, known as plasticizer, are sued as the dopant for non-conductive polymers. There are several advantages of employing the ionic liquids over other dopants, including the maintenance of organic based blends (both the polymers and ionic liquids are organic) and maintaining biocompatibility of the blends for bio-related applications. In this work, conductive polymers were synthesized by blending non-conductive mixture of poly vinyl alcohol (PVA) and Poly-acrylamide-co-acrylic acid (PAA) with different weight percentages of glycerol, sorbitol and imidazolium bromide). The percentage of the dopant plasticizers were varied from 0-5% by wt ratio. The solution casting method was used to form thin films, which were examined with nanoindentation, differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), Fourier Transform Infrared spectroscopy (FT-IR) and ac impedance spectroscopy. It was found that the thermal properties (glass transition, Tg, melting point, Tm, and decomposition temperature, Td) for the blended PVA/PAA showed a decrease proportional to the percentages of the three plasticizers used in this project. The hardness and elastic modulus obtained from the nanoindentation test were also found to decrease with increase in plasticizer concentration. FT-IR confirmed the reduction in hydrogen bonding between combined polymer chains in favor of formation new bonding between the plasticizers and the polymer blend chains. The novelty of doping nonconductive polymers with ionic liquid stems from the ability to modulate the degree of electrical conductivity, mechanical and thermal properties of the blends by controlling the percentage of the ionic liquid introduced into the polymer will open a new field of polymer studies; hence, organic polymer blends. Once blends with favorable properties were identified; they were then utilized in producing an organic storage memory device. A hysteresis loop approximately ±20V wide was observed as a charge element based under ± 20V sweep range when CNT was blended, but ±5 to ±10 when gold (Au) and zinc oxide (ZnO) were blended along with the mixture of the polymers and the glycerol. The impedance measurements showed that the ionic conductivity of PVA/PAA polymer membrane can be controlled by addition of plasticizer. Hence, the novel conductive polymer presented in this thesis formed a solution to overcome challenges associated with a total organic memory device. The doped polymers were substituted for the silicon base semiconductor in a conventional memory device, however with enhanced performance compared to the silicon based device

    Physically synthesized Ni-Cu nanoparticles for magnetic hyperthermia

    Get PDF
    BACKGROUND: In this paper, a physical method to prepare copper-nickel alloy particles in the sub-micron range for possible self controlled magnetic hyperthermia treatment of cancer is described. It is reported that an increase in tumor temperature decreases the tumor resistance to chemo- and radiation therapies. Self controlled heating at the tumor site to avoid spot heating is managed by controlling the Curie temperature of the magnetic particles. The process described in this paper to produce the nanomagnetic particles allows for a large scale production of these particles. METHODS: The process used here is mainly composed of melting of the Cu-Ni mixture and ball milling of the resulted bulk alloy. Both mechanical abrasion and continuous grinding were used to break down the bulk amount into the desired particle size. RESULTS: It was found that the desired alloy is composed of 71% nickel and 29% copper by weight. It was observed that the coarse sand-grinded powder has a Curie temperature of 345 K and the fine ball-milled powder shows a temperature of 319 K – 320 K. CONCLUSION: Self regulating magnetic hyperthermia can be achieved by synthesizing nanomagnetic particles with desired Curie temperature. In this study the desired range of Curie temperatures was obtained by combination of melting and ball milling of nickel-copper alloy

    A biocompatible magnetic film: synthesis and characterization

    Get PDF
    BACKGROUND: Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. METHODS: A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (γ-Fe(2)O(3), ~7 nm) have been used to produce the magnetic gel. RESULTS: The surface morphology and magnetic properties of the gel films were studied. The iron oxide particles are superparamagnetic and the gel film also showed superparamagnetic behavior. CONCLUSION: Magnetic gel made out of crosslinked magnetic nanoparticles in the polymer network was found to be stable and possess the magnetic properties of the nanoparticles

    Multifunctional Nanoparticles for Imaging Guided Interventions

    Get PDF
    We describe multifunctional magnetic nanoparticles (MNPs) encapsulated in thermosensitive, drug-bearing shells and delivered to the tumor site by genetically modified and non-pathogenic strains of bacteria with known affinity to tumors for an effective and minimally invasive protocol for tumor management. The magnetic nanoparticles also serve as a non-invasive imaging contrast agent, heating agent as well as thermometry monitoring agents. We have shown an efficient tumor management on a mouse model utilizing the MNPs. Our studies showed that these novel MNPs significantly reduce the progress of tumor and prolong the animal life and function as an imaging contrast to visually monitor the tumor treatment and evolution

    Reactive Extrusion of Polyethylene Terephthalate Waste and Investigation of Its Thermal and Mechanical Properties after Treatment

    Get PDF
    This study investigates treating polyethylene terephthalate (PET) waste water bottles with different mass of ethylene glycol (EG) using reactive extrusion technique at a temperature of 260°C. The study puts emphases on evaluating the thermal, mechanical, and chemical characteristics of the treated polyethylene terephthalate. The properties of the treated PET from the extruder were analyzed using FT-IR, TGA, DSC, and nanoindentation. The melt flow indexes (MFI) of both treated and untreated PET were also measured and compared. Thermal properties such as melting temperature (Tm) for treating PET showed an inversely proportional behavior with the EG concentrations. The FT-IR analysis was used to investigate the formation of new linkages like hydrogen bonds between PET and EG due to the hydroxyl and carbonyl groups. Nanoindentation results revealed that both the mechanical characteristics, elastic modulus and hardness, decrease with increasing EG concentration. On the other hand, the melt flow index of treated PET exhibited an increase with increasing EG concentration in the PET matrix

    A Review of Enzymatic Transesterification of Microalgal Oil-Based Biodiesel Using Supercritical Technology

    Get PDF
    Biodiesel is considered a promising replacement to petroleum-derived diesel. Using oils extracted from agricultural crops competes with their use as food and cannot realistically satisfy the global demand of diesel-fuel requirements. On the other hand, microalgae, which have a much higher oil yield per hectare, compared to oil crops, appear to be a source that has the potential to completely replace fossil diesel. Microalgae oil extraction is a major step in the overall biodiesel production process. Recently, supercritical carbon dioxide (SC-CO2) has been proposed to replace conventional solvent extraction techniques because it is nontoxic, nonhazardous, chemically stable, and inexpensive. It uses environmentally acceptable solvent, which can easily be separated from the products. In addition, the use of SC-CO2 as a reaction media has also been proposed to eliminate the inhibition limitations that encounter biodiesel production reaction using immobilized enzyme as a catalyst. Furthermore, using SC-CO2 allows easy separation of the product. In this paper, conventional biodiesel production with first generation feedstock, using chemical catalysts and solvent-extraction, is compared to new technologies with an emphasis on using microalgae, immobilized lipase, and SC-CO2 as an extraction solvent and reaction media

    IMECE2002-33401 FABRICATION OF NdFeB THIN FILM AND ITS APPLICATION IN MEMS

    Get PDF
    ABSTRACT The paper measures the magnetic properties of NdFeB thin films developed under the effects of magnetic field. The samples exhibited a larger residual inductance, saturation magnetization and energy product than those treated without field or with weaker field. Magnetic MEMS was introduced with application of the NdFeB film to micro device such as pumps and gear transmission system
    corecore