86 research outputs found

    A Location Prediction Algorithm for Mobile Communications Using Directional Antennas

    Get PDF
    A directional communication scheme, TRAC, is proposed in this paper to deal with issues in mobile directional communications. Directional communication can bring benefits in terms of spatial reuse, power consumption, and security. Using direction antennas implies that the transmitters must know the direction or location of the receiver. It is necessary to predict the receiver's location to keep the transmitter's antenna pointing in the right direction if nodes travel always. TRAC is composed of the location prediction and antenna adjustment. It predicts a possible circular region where the moving receiver may enter into in the near future. The transmitter points its antenna at the predicted circular region and adjusts the beam-width of its directional antenna to cover the predicted region. The authors validated the TRAC algorithm on some vehicles traces. The validation indicated that the algorithm efficiency of TRAC is larger than 96%. TRAC can be employed in mobile communications without nodes' history movement traces

    Sr, Fe Co-doped Perovskite Oxides With High Performance for Oxygen Evolution Reaction

    Get PDF
    Developing efficient and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is still a big challenge. Here, perovskite La0.4Sr0.6Ni0.5Fe0.5O3 nanoparticles were rationally designed and synthesized by the sol-gel method with an average size around 25 nm, and it has a remarkable intrinsically activity and stability in 1 M KOH solution. Compared with other perovskite (LaNiO3, LaFeO3, and LaNi0.5Fe0.5O3) catalysts, La0.4Sr0.6Ni0.5Fe0.5O3 exhibits superior OER performance, smaller tafel slope and lower overpotential. The high electrochemical performance of La0.4Sr0.6Ni0.5Fe0.5O3 is attributed to its optimized eg filling (~1.2), as well as the excellent conductivity. This study demonstrates co-doping process is an effective way for increasing the intrinsic catalytic activity of the perovskite

    The training of wrist arthroscopy

    Get PDF
    The wrist is a complex joint that bridges the hand to the forearm. Patients with wrist disorders increasingly prefer minimally invasive procedures for wrist joint diagnosis and treatment. Wrist arthroscopy offers direct visualization of the structures of the joint anatomy and existing disease processes while causing minimal damage to surrounding soft tissue. However, it requires a high level of technical ability for wrist arthroscopy practitioners. Therefore, an improved focus on wrist arthroscopy training combining new educational media and traditional practice should aid in the development of novel wrist arthroscopy training mode. This article aims to describe the status of wrist training and evaluation systems and introduce a new progressive wrist training system

    Experimental analysis of defrosting and heating performance of a solar-assisted heat pump integrated phase change energy storage

    Get PDF
    This thesis investigates a novel solar-assisted heat pump integrated phase change energy storage system. The defrosting performance of this system was studied experimentally and the results were compared with two traditionally used methods: reverse cycle defrosting (RCD) method and hot gas bypass defrosting (HGBD) method. The results show that the phase change energy storage system has superior performance compared with traditional defrosting methods. The indoor temperature drop recorded was relatively small and the defrosting time was 75% of the RCD system and 53% of HGBD system. The phase change energy storage system increased the condensation temperature which consequently increased the temperature difference of heat transfer resulting in higher conductivity in the defrosting progress. Compared with the method of RCD and the method of HGBD, the recovery time of the system was shortened by 90 and 160 seconds, respectively. The system works with low-temperature heat source and circulating water, which considerably reduces energy consumption, thereby improving the performance of the defrosting system. A further experimental study was also conducted on the heating performance and the results also indicated that the value of COP can reach up to 3.6 in daytime, and the indoor temperature can be stably maintained above 18°C throughout the day

    Aptamer modified Zr-based porphyrinic nanoscale metal-organic frameworks for active-targeted chemo-photodynamic therapy of tumors

    Get PDF
    Active-targeted nanoplatforms could specifically target tumors compared to normal cells, making them a promising therapeutic agent. The aptamer is a kind of short DNA or RNA sequence that can specifically bind to target molecules, and could be widely used as the active targeting agents of nanoplatforms to achieve active-targeted therapy of tumors. Herein, an aptamer modified nanoplatform DOX@PCN@Apt-M was designed for active-targeted chemo-photodynamic therapy of tumors. Zr-based porphyrinic nanoscale metal organic framework PCN-224 was synthesized through a one-pot reaction, which could produce cytotoxic 1O2 for efficient treatment of tumor cells. To improve the therapeutic effect of the tumor, the anticancer drug doxorubicin (DOX) was loaded into PCN-224 to form DOX@PCN-224 for tumor combination therapy. Active-targeted combination therapy achieved by modifying the MUC1 aptamer (Apt-M) onto DOX@PCN-224 surface can not only further reduce the dosage of therapeutic agents, but also reduce their toxic and side effects on normal tissues. In vitro, experimental results indicated that DOX@PCN@Apt-M exhibited enhanced combined therapeutic effect and active targeting efficiency under 808 nm laser irradiation for MCF-7 tumor cells. Based on PCN-224 nanocarriers and aptamer MUC1, this work provides a novel strategy for precisely targeting MCF-7 tumor cells

    >

    No full text

    Performance-Matching Optimization Design of Loader-Hydraulic System Based on Hydrodynamics Analysis

    No full text
    The study of the performance of dynamic hydraulic throttling under the condition of stable fluid is of great significance. The effect of a step change in pressure differences on the throttling performance of a hydraulic valve is studied. This paper studies the dynamic and static performance of a hydraulic-valve-outlet throttling-speed regulation system, builds a more accurate mathematical model, considers the linear factors of the flow of hydraulic-valve throttling, analyzes the influence of the step-load change in pressure difference on the stability of the hydraulic-valve movement speed, and constructs a nonlinear mathematical model of the speed-regulation system of the outlet throttling. A pressure sensor is used to measure the change in pressure overshoot, and the effect of a pressure-difference step change on the throttling performance of the hydraulic valve is studied under steady-fluid conditions. The theory is analyzed and verified by experiment, and the parameters of hydraulic components are modified using the dynamic-change rule of the hydraulic valve’s two-chamber pressure

    Site Classification of Eucalyptus urophylla Ă— Eucalyptus grandis Plantations in China

    No full text
    Background and Objectives: It is important to match species needs with site conditions for sustainable forestry. In Eucalyptus urophylla × Eucalyptus grandis plantations in southern Yunnan, China, species-site mismatches have led to inappropriate expansion and management, which has degraded forests and decreased efficiency in plantation production. Further research is needed to understand the relationship between tree growth and site productivity. We empirically explored site features and classified site types within these plantations in southern Yunnan. Our objective was to develop a theoretical basis for improving site selection for afforestation, and to establish intensive management in that region. Materials and Methods: 130 standard plots were set up in 1−15-year-old eucalyptus plantations in Pu’er and Lincang. We used quantification theory to examine the relationship between dominant tree growth traits and site factors. Hierarchical cluster analysis and canonical correlation analysis were applied to classify sites and evaluate the growth potential of E. urophylla × E. grandis plantations, respectively. Results: The multiple correlation coefficient between eight site factors (altitude, slope, slope position, aspect, soil depth, texture, bulk density, and litter thickness) and the quantitative growth of the dominant tree was 0.834 (p < 0.05). Slope position, altitude, and soil depth were the main factors contributing to the variation in stand growth. Plantation growth was best on lower slopes at relatively low altitude, where thick and weathered red soil layers existed. Conversely, the poorest plantations were located on upper slopes at higher altitude, with a thin semi-weathered purple soil layer. The soil factors total nitrogen (N) and potassium (K), trace boron (B), copper (Cu), and zinc (Zn) content, available phosphorous (P), and organic matter content in the soil influenced plantation growth. Conclusions. The addition of N, P, and K fertilizer as well as trace elements such as B, Cu, and Zn can promote the productivity of these plantations
    • …
    corecore