209 research outputs found

    Matrix design of a novel ductile cast iron modified by W and Al: A comparison between thermodynamic modeling and experimental data

    Get PDF
    In high-temperature applications of ferrous materials, as in the case of exhaust manifolds, high thermal and mechanical stability are required. Stainless steels and Ni-resist alloys having austenitic matrices are good candidates to meet these requirements at elevated temperatures; however, they are expensive materials and present difficulties in casting. Ferritic ductile cast irons, like the commercial SiMo alloy, are comparatively cheaper materials with better castability but they cannot be used above approximately 800 °C. Thus, to meet the requirements with low-cost materials having improved high-temperature properties, new alloys must be developed by ferrite forming elements having the potential to increase equilibrium temperature. In this study, initially, a novel ductile cast iron matrix was designed using 1 W and 0-4 Al wt.-% and their phases stable at room temperature, transformation temperatures, solidification sequences and thermal expansivity values were determined using thermodynamic calculations with Thermo-Calc software. Computational studies revealed that (i) designed alloy matrices had graphite and M6C type carbides embedded in a ferritic matrix at room temperature as expected, (ii) A1 temperature increased as aluminum content increased. The obtained values were all above that of commercial SiMo alloy, (iii) the detrimental effect of increased aluminum addition on graphite content, and thermal expansivity was observed. Secondly, microstructural and thermal characterizations of cast alloys were performed for validation - the obtained data were in good agreement with the thermodynamic calculations

    The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media

    Get PDF
    This work is focused on the role of hydrogen in corrosion damage induced by the cyclic exposure of 2024 aluminium alloy to chloride media with air emersion periods at room and/or negative temperatures. Various analysis and microscopic observation techniques were applied at intergranular corrosion defects. A mechanism involving the contribution of hydrogen to the degradation of the alloy mechanical properties is presented. Several consecutive stress states appear during cycling, resulting from volume expansion of the electrolyte trapped in the intergranular defects during emersion phases at -20°C. These stress states lead to hydrogen diffusion, transport and trapping

    Austenite in Transformation-Induced Plasticity Steel Subjected to Multiple Isothermal Heat Treatments

    Get PDF
    The thermodynamic limit to the progress of the bainite reaction in steels containing a cementite inhibitor often leaves large quantities of thermally or mechanically unstable austenite. Such austenite is not effective in delaying the onset of plastic instabilities during the course of deformation. In such circumstances, it is useful to conduct isothermal transformation at a high temperature where the rate of reaction is relatively rapid, followed by a lower temperature step that permits more bainite to be generated. This in turn increases the stability of the refined austenite, which then transforms gently over a large range of strain during a tensile test. A significant corollary is that the two-step heat treatments are unnecessary in low-carbon steels, where the bainite reaction is able to proceed to a greater extent before reaching the thermodynamic limit. Furthermore, the two-step process can be counterproductive in low carbon steel, because the austenite content is reduced to a level below which it does not enhance the mechanical properties. Other circumstances in which multiple heat treatments are necessary are also discussed.The authors are grateful to POSCO for support through Steel Innovation Programme, and to the World Class University Programme of the National Research Foundation of Korea, Ministry of Education, Science and Technology, project number R32-2008-000-10147.This is the accepted manuscript version. The final published version is available from Springer at http://link.springer.com/article/10.1007%2Fs11661-014-2405-z

    Austenite stabilization from direct cementite conversion in low-alloy steels

    No full text
    Transformation induced elasticity (TRIP) effects associated with austenite dispersions in low alloy Fe-Mn-Si steels can be enhanced by austenite stabilisation. Austenite which forms during conventional intercritical annealing does not possess the required stability in order to exhibit TRIP effects. In this work, thermodynamic calculations indicated that it is feasible to form austenite by a cementite to austenite conversion which occurs under paraequilibrium conditions, i.e with partition of carbon but with no partition of substitutional alloying elements. In this way the austenite inherits the manganese content of cementite and is chemically stabilised. A treatment consisting of a two-step annealing has been examined. In the first step, soft annealing, an Mn-enriched cementite dispersion in ferrite is formed. In the second step, intercritical annealing, austenite nucleates on the cementite particles, which are consumed to form austenite. It was experimentally determined that this austenite has been enriched in manganese and carbon and, therefore, is stabilised. The conversion reaction is followed by the conventional austenite nucleation at ferrite grain boundaries. This austenite is lean in manganese and is not stable. The net effect of the two-step annealing treatment is a significant austenite stabilisation relative to simple intercritical annealing, indicating a potential for enhanced TRIP effects in this class of steels

    Dispersed-phase transformation toughening in ultrahigh-strength steels

    No full text
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1988.Vita.Includes bibliographical references.by Gregory N. Haidemenopoulos.Ph.D

    Exploitation of the TRIP effect for the development of formable, fracture and fatigue resistant steels for automotive applications

    No full text
    The present paper summarizes recent and on-going work on the exploitation of TRansformation-Induced Plasticity (TRIP) in an effort to develop automotive steels which would possess high-strength combined with high formability while these steels could also exhibit high fracture and fatigue resistance. Especially for the automotive industry, the driving force for these developments is the vehicle weight reduction, which could eventually lead to lower fuel consumption combined with reduced greenhouse gas emissions. The discussion starts with the modelling and characterization of the retained austenite stability (the transforming phase) as well as the modelling of the transformation kinetics, i.e. evolution of transformation with plastic strain. Enhancement of formability is discussed next. Constitutive micromechanical modelling has been employed for the calculation of forming limit diagrams (FLD) for these complex steels, an issue of great practical importance for the optimisation of stretch-forming and deep-drawing operations. Fracture resistance can be considerably increased by the TRIP effect. A review is made of the "transformation toughening" arising from metastable austenitic dispersions in ultrahigh strength steels and the high fracture toughness achieved in this class of materials. The potential of the TRIP effect in increasing fatigue strength has not yet received considerable attention. However once we understand the fatigue behaviour of these materials, new applications, e.g. long products made of TRIP steel, might emerge for automotive applications. © Springer Science+Business Media B.V. 2009
    corecore