53 research outputs found

    The rising prospects of cloud robotic applications

    Get PDF

    Application of Compensation Algorithms to Control the Movement of a Robot Manipulator

    Get PDF
    This article presents an application-oriented method for the structural synthesis of control systems for multichannel linear objects. It provides a general form, based on the compensation for object dynamics and disturbances. The algorithm is based onalgebraic transformations of the mathematical model of the object and reference systems. The general procedure for the synthesis of a control algorithm is presented by the example of a SISO first-order object. Parametric robustness and correspondence of the system behavior to its own reference filters were derived. The possibility of applying this method to control non-linear objects presented in the form of "State Dependent coefficient (SDC)" is ascertained. A simplified example is given by the synthesis of the motion control of a one-link manipulator with a drive, described by a second-order nonlinear equation. Control of a two-link manipulator represented by its linearized equation is demonstrated. The convenience of the proposed synthesis method for controlling multi-channel objects under certain simplifications allowed by the specifics of the use of objects is shown. The numerical example shows the independence of the system through individual channels, a zero static error in all the modes of operation and the correspondence of the system behavior to given dynamics

    Observation-Based Data Driven Adaptive Control of an Electromechanical Device

    Get PDF
    The model-based approach in control engineering works well when a reliable plant model is available. However, in practice, reliable models seldom exist: instead, typical “levels” of limited reliability occur. For instance, Computed Torque Control (CTC) in robotics assumes almost perfect models. The Adaptive Inverse Dynamics Controller (AIDC) and the Slotine Li Adaptive Robot Controller (SLARC) assume absolutely correct analytical model form, and only allows imprecise knowledge regarding the actual values of the model parameters. Neglecting the effects of dynamically coupled subsystems, and allowing the action of unknown external disturbances means a higher level of corrupted model reliability. Friction-related problems are typical examples of this case. In the traditional control literature, such problems are tackled by either drastic “robust” or rather intricate “adaptive” solutions, both designed by the use of Lyapunov’s 2 nd method that is a complicated technique requiring advanced mathematical skills from the designer. As an alternative design methodology, the use of Robust Fixed Point Transformations (RFPT) was suggested, which concentrates on guaranteeing the prescribed details of tracking error relaxation via generation of iterative control signal sequences that converge on the basis of Banach’s Fixed Point Theorem . This approach is essentially based on the fresh data collected by observing the behavior of the controlled systems, rather than in the case of the traditional ones. For the first time, this technique is applied for order reduction in the adaptive control of a strongly nonlinear plant with significant model imprecisions: the control of a DC motor driven arm in dynamic interaction with a nonlinear environment is demonstrated via numerical simulations

    Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery

    Get PDF
    Purpose: Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. Methods: The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model.Results: The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09mm (translations) and of (Formula presented.) (rotations), maximum observed errors in the order of 0.12mm (translations) and of (Formula presented.) (rotations), and a reduction repeatability of 0.02mm and (Formula presented.). Conclusions: The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick

    Get PDF
    BACKGROUND: Robot-assisted laparoscopic surgery offers several advantages compared with open surgery and conventional minimally invasive surgery. However, one issue that needs to be resolved is a collision between the robot arm and the assistant instrument. This is mostly caused by miscommunication between the surgeon and the assistant. To resolve this limitation, an assistant surgical robot system that can be simultaneously manipulated via a wireless controller is proposed to allow the surgeon to control the assistant instrument. METHODS: The system comprises two novel master interfaces (NMIs), a surgical instrument with a gripper actuated by a micromotor, and 6-axis robot arm. Two NMIs are attached to master tool manipulators of da Vinci research kit (dVRK) to control the proposed system simultaneously with patient side manipulators of dVRK. The developments of the surgical instrument and NMI are based on surgical-operation-by-wire concept and hands-on-throttle-and-stick concept from the earlier research, respectively. Tests for checking the accuracy, latency, and power consumption of the NMI are performed. The gripping force, reaction time, and durability are assessed to validate the surgical instrument. The workspace is calculated for estimating the clinical applicability. A simple peg task using the fundamentals of laparoscopic surgery board and an in vitro test are executed with three novice volunteers. RESULTS: The NMI was operated for 185 min and reflected the surgeon’s decision successfully with a mean latency of 132 ms. The gripping force of the surgical instrument was comparable to that of conventional systems and was consistent even after 1000 times of gripping motion. The reaction time was 0.4 s. The workspace was calculated to be 8397.4 cm(3). Recruited volunteers were able to execute the simple peg task within the cut-off time and successfully performed the in vitro test without any collision. CONCLUSIONS: Various experiments were conducted and it is verified that the proposed assistant surgical robot system enables collision-free and simultaneous operation of the dVRK’s robot arm and the proposed assistant robot arm. The workspace is appropriate for the performance of various kinds of surgeries. Therefore, the proposed system is expected to provide higher safety and effectiveness for the current surgical robot system
    • 

    corecore