5 research outputs found

    Nanobiosensors-their Applications in the Medicinal Plants Industry

    Get PDF
    For centuries, herbal drugs have been the only accessible resource for treatment of pain and passions. Today, despite remarkable progress and development of synthetic drugs, medicinal plants and their derived drugs are used massively. So that, in some countries medicinal plants is inseparable from drugs and treatment systems. More ever, their marketing and economical aspects are more flourishing than other chemical drugs. Monitoring of medicinal plant products is necessary in drug industry. There is increasing demand for development of analytical equipments for the production process, from crude materials to final products. In this case, biosensors can be excellent analytical tools in order to analysis of medicinal plants and their products. This review is going to explain nano-biosensor technology briefly and so their potential application in medicinal plant industry. Some of these applications are monitoring of environment and fast identification of pathogens, determination of toxicities, measurement of different types of secondary metabolites, herbal pharmacology and others

    Identification, Cloning and Structural Analysis of Major Genes from Portulaca oleracea L. Hairy Roots that Involved in the Biosynthesis of Dopamine

    Get PDF
    Dopamine is one of the important medications of Portulaca oleracea L. To optimize the production of dopamine, one of the methods is the identification and engineering of metabolite pathways. To investigate the tyrosine decarboxylase (TDC) and tyrosinase, which seem to be the most important genes in dopamine synthesis pathway, hairy roots were produced from Portulaca oleracea using Agrobacterium rhizogenes and total RNA was extracted from hairy roots. A cDNA library was synthesized using RT-PCR. Then, the twogenes were amplified, isolated and cloned in a pTG 19-T vector. Bioinformatics' databases were used to predict the details of the structural, functional and biological characteristic of these genes. Nucleotide sequence analysis revealed that the cloned cDNAs expressed TDC and tyrosinase, and contained a single open reading frame of 1800 bp and 1750 bp, respectively. TDC has the most similarity with TDC of Arabidopsis thaliana (L.) Heynh.,but tyrosinase has 98% similarity withtyrosinase of Agaricus bisporus. Because of More negatively charged amino acids the TDC has hydrophobic properties, therefore affinity and hydrophilic chromatography can be used for purification of TDC. But tyrosinase has hydrophilic properties and hydrophobicity chromatography can be used for its purification. There were two peroxisomal signal peptide (KLAKEFEQL) and (KIEGRPLHL) in the TDC and tyrosinase, respectively. Therefore, they are biologically active in the peroxisomes, and included in biosynthesis dopamine through the transformation of L-lysine to L-dopa and finally to the dopamine. In conclusion, increasing the expression of TDC and tyrosinase through the genetic engineering can increase dopamine production in the Portolaca

    Phytochemical Characterization and Screening of the Anti-Pneumonia (Anti-COVID-19, Anti-Fungal, and Anti-Bacterial) Activities of Cuscuta Campestris Extract

    No full text
    Introduction: Although, several vaccines are being approved, no effective antiviral drug has been developed for COVID-19 infectious. The present investigation was aimed to increase the essential oils of Cuscuta campestris using far-red light treatment and examine the potential of crude extracts of C. campestris against selected pneumonia pathogens and COVID-19. Methods:Anti-COVID-19 activity was determined in human lung cel lines and COVID-19 positive patients. Results: Results demonstrated that the aqueous extract had the highest amount of anti-COVID-19, antibiotic and antioxidant activity. The far-red light treatment increased Scoparone, cineole, Benzofuran, 2, 3- dihydro, Cinnamic acid, and Benzo[h]quinoline, 2, 4-dimethyl, which are mainly effective components against COVID-19 inflammation and pneumonia microbes. CT scan and clinical laboratory tests in a clinical case study, a 30-year-old woman who presented with severe 2019-nCoV, demonstrated that inhalation of 30 mg extract nebulized/day for seven days resulted in significant improvement in consolidation and ground-glass opacity in lungs on the seventh day of treatment.Conclusion: It is hoped that this study leads to the introduction of some compounds that could be used to formulate new and more potent anti-COVID-19 antibiotics, or other drugs of natural origin in medicine.</p

    Specific delivering of RNAi using Spike's aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: A strong anti-Covid drug in a clinical case study

    Get PDF
    Coronavirus (SARS-CoV-2) as a global pandemic has attracted the attention of many scientific centers to find the right treatment. We expressed and purified the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein, and specific RBD aptamers were designed using SELEX method. RNAi targeting nucleocapsid phosphoprotein was synthesized and human lung cells were inoculated with aptamer-functionalized lipid nanoparticles (LNPs) containing RNAi. The results demonstrated that RBD aptamer having KD values of 0.290 nm possessed good affinity. Based on molecular docking and efficacy prediction analysis, siRNA molecule was showed the best action. LNPs were appropriately functionalized by aptamer and contained RNAi molecules. Antiviral assay using q-PCR and ELISA demonstrated that LNP functionalized with 35 µm Apt and containing 30 nm RNAi/ml of cell culture had the best antiviral activity compared to other concentrations. Applied aptamer in the nanocarrier has two important functions. First, it can deliver the drug (RNAi) to the surface of epithelial cells. Second, by binding to the SARS-CoV-2 spike protein, it inhibits the virus entrance into cells. Our data reveal an interaction between the aptamer and the virus, and RNAi targeted the virus RNA. CT scan and the clinical laboratory tests in a clinical case study, a 36-year old man who presented with severe SARS-CoV-2, demonstrated that inhalation of 10 mg Apt-LNPs-RNAi nebulized/day for six days resulted in an improvement in consolidation and ground-glass opacity in lungs on the sixth day of treatment. Our findings suggest the treatment of SARS-CoV-2 infection through inhalation of Aptamer-LNPs-RNAi
    corecore