26 research outputs found

    Data-Dependent Hashing Based on p-Stable Distribution

    Full text link

    Small Extracellular Vesicles in Milk Cross the Blood-Brain Barrier in Murine Cerebral Cortex Endothelial Cells and Promote Dendritic Complexity in the Hippocampus and Brain Function in C57BL/6J Mice

    Get PDF
    Human milk contains large amounts of small extracellular vesicles (sEVs) and their microRNA cargos, whereas infant formulas contain only trace amounts of sEVs and microRNAs. We assessed the transport of sEVs across the blood-brain barrier (BBB) and sEV accumulation in distinct regions of the brain in brain endothelial cells and suckling mice. We further assessed sEV-dependent gene expression profiles and effects on the dendritic complexity of hippocampal granule cells and phenotypes of EV depletion in neonate, juvenile and adult mice. The transfer of sEVs across the BBB was assessed by using fluorophore-labeled bovine sEVs in brain endothelial bEnd.3 monolayers and dual chamber systems, and in wild-type newborn pups fostered to sEV and cargo tracking (ECT) dams that express sEVs labeled with a CD63-eGFP fusion protein for subsequent analysis by serial two-photon tomography and staining with anti-eGFP antibodies. Effects of EVs on gene expression and dendritic architecture of granule cells was analyzed in hippocampi from juvenile mice fed sEV and RNA-depleted (ERD) and sEV and RNA-sufficient (ERS) diets by using RNA-sequencing analysis and Golgi-Cox staining followed by integrated neuronal tracing and morphological analysis of neuronal dendrites, respectively. Spatial learning and severity of kainic acid-induced seizures were assessed in mice fed ERD and ERS diets. bEnd.3 cells internalized sEVs by using a saturable transport mechanism and secreted miR-34a across the basal membrane. sEVs penetrated the entire brain in fostering experiments; major regions of accumulation included the hippocampus, cortex and cerebellum. Two hundred ninetyfive genes were differentially expressed in hippocampi from mice fed ERD and ERS diets; high-confidence gene networks included pathways implicated in axon guidance and calcium signaling. Juvenile pups fed the ERD diet had reduced dendritic complexity of dentate granule cells in the hippocampus, scored nine-fold lower in the Barnes maze test of spatial learning and memory, and the severity of seizures was 5-fold higher following kainic acid administration in adult mice fed the ERD diet compared to mice fed the ERS diet. We conclude that sEVs cross the BBB and contribute toward optimal neuronal development, spatial learning and memory, and resistance to kainic acid-induced seizures in mice

    Surface Plasmon Enhanced Light Trapping in Metal/Silicon Nanobowl Arrays for Thin Film Photovoltaics

    Get PDF
    Enhancing the light absorption in thin film silicon solar cells with nanophotonic and plasmonic structures is important for the realization of high efficiency solar cells with significant cost reduction. In this work, we investigate periodic arrays of conformal metal/silicon nanobowl arrays (MSNBs) for light trapping applications in silicon solar cells. They exhibited excellent light-harvesting ability across a wide range of wavelengths up to infrared regimes. The optimized structure (MSNBsH) covered by SiO2 passivation layer and hemisphere Ag back reflection layer has a maximal short-circuit density (Jsc) 25.5 mA/cm2, which is about 88.8% higher than flat structure counterpart, and the light-conversion efficiency (η) is increased two times from 6.3% to 12.6%. The double-side textures offer a promising approach to high efficiency ultrathin silicon solar cells

    Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury

    Get PDF
    Secondary spinal cord injury (SSCI) is the second stage of spinal cord injury (SCI) and involves vasculature derangement, immune response, inflammatory response, and glial scar formation. Bioactive additives, such as drugs and cells, have been widely used to inhibit the progression of secondary spinal cord injury. However, the delivery and long-term retention of these additives remain a problem to be solved. In recent years, hydrogels have attracted much attention as a popular delivery system for loading cells and drugs for secondary spinal cord injury therapy. After implantation into the site of spinal cord injury, hydrogels can deliver bioactive additives in situ and induce the unidirectional growth of nerve cells as scaffolds. In addition, physical and chemical methods can endow hydrogels with new functions. In this review, we summarize the current state of various hydrogel delivery systems for secondary spinal cord injury treatment. Moreover, functional modifications of these hydrogels for better therapeutic effects are also discussed to provide a comprehensive insight into the application of hydrogels in the treatment of secondary spinal cord injury

    A CsI hodoscope on CSHINE for Bremsstrahlung {\gamma}-rays in Heavy Ion Reactions

    Full text link
    Bremsstrahlung γ\gamma production in heavy ion reactions at Fermi energies carries important physical information including the nuclear symmetry energy at supra-saturation densities. In order to detect the high energy Bremsstrahlung γ\gamma rays, a hodoscope consisting of 15 CsI(Tl) crystal read out by photo multiplier tubes has been built, tested and operated in experiment. The resolution, efficiency and linear response of the units to γ\gamma rays have been studied using radioactive source and (p,γ)({\rm p},\gamma) reactions. The inherent energy resolution of 1.6%+2%/Eγ1/21.6\%+2\%/E_{\gamma}^{1/2} is obtained. Reconstruction method has been established through Geant 4 simulations, reproducing the experimental results where comparison can be made. Using the reconstruction method developed, the whole efficiency of the hodoscope is about 2.6×1042.6\times 10^{-4} against the 4π4\pi emissions at the target position, exhibiting insignificant dependence on the energy of incident γ\gamma rays above 20 MeV. The hodoscope is operated in the experiment of 86^{86}Kr + 124^{124}Sn at 25 MeV/u, and a full γ\gamma energy spectrum up to 80 MeV has been obtained.Comment: 9 pages, 19 figure

    Effect of partial Ni substitution in V85Ni15 by Ti on microstructure, mechanical properties and hydrogen permeability of V-based BCC alloy membranes

    No full text
    Vanadium-based alloy membranes with body-centred-cubic (BCC) structure are considered as one of the leading alternatives to Pd-based alloys for hydrogen separation applications due to their lower cost and higher permeability. As permeability and mechanical properties depend on what microstructure can be produced mainly by alloy composition under same processing conditions, the effect of alloy composition on microstructure, mechanical properties and hydrogen permeability has been investigated for the V _85 Ni _15 and V _85 Ni _10 Ti _5 (at%) alloys prepared by a same process route. All Ni atoms dissolve into the V-matrix to form a single highly supersaturated solid solution with dendritic segregation of Ni-solute atoms in the binary alloy. A part of Ni replacement with 5 at% Ti leads to the formation of small interdendritic phases NiTi and NiTi _2 in addition to major phase of V-based solid solution. The mechanical property testing shows that the ultimate strength of the ternary alloy is higher than that of the binary alloy, but the elongation and rollability are lower due to a combination of solid solution hardening and particle strengthening effect. The addition of Ti can greatly increase permeability about 4 times greater than the binary alloy at a permeation testing of 400 °C. But the presence of small amounts of interdendritic compounds provides a barrier to hydrogen migration, resulting in a relatively lower hydrogen diffusion coefficient. In theory, the diffusivity and solubility of hydrogen atom in the presence of alloying element Ti is higher than that in the presence of alloying element Ni in vanadium. This is demonstrated using first principles calculation which further explains the mechanism of hydrogen permeation

    Nitrite and nitrate in meat processing: Functions and alternatives

    No full text
    Meat and meat products are important foods in the human diet, but there are concerns about their quality and safety. The discovery of carcinogenic and genotoxic N-nitroso compounds (NOCs) in processed meat products has had serious negative impacts on the meat industry. In order to clarify the relationship between the use of nitrite or nitrate and the safety of meat or meat products, we reviewed NOCs in meat and meat products, the origin and safety implications of NOCs, effects of nitrite and nitrate on meat quality, national regulations, recent publications concerning the using of nitrite and nitrate in meat or meat products, and reduction methods. By comparing and analyzing references, (1) we found antioxidant, flavor improvement and shelf-life extension effects were recently proposed functions of nitrite and nitrate on meat quality, (2) the multiple functions of nitrite and nitrate in meat and meat products couldn't be fully replaced by other food additives at present, (3) we observed that the residual nitrite in raw meat and fried meat products was not well monitored, (4) alternative additives seem to be the most successful methods of replacing nitrite in meat processing, currently. The health risks of consuming processed meat products should be further evaluated, and more effective methods or additives for replacing nitrite or nitrate are needed

    Dispatching High-Speed Rail Trains via Utilizing the Reverse Direction Track: Adaptive Rescheduling Strategies and Application

    No full text
    This paper studies the train rescheduling problem on high-speed railway corridor in the situation where contingencies occur and lead to sudden deceleration of some trains. First, we develop an adaptive rescheduling strategy (AR-S) which allows normal trains to use reverse direction track to overtake front decelerating trains based on delay comparison under different path choices. Second, the traditional rescheduling strategy (TR-S) which does not allow any trains to switch tracks is mentioned as a sharp contrast to AR-S. Furthermore, a performance evaluation criterion is designed to evaluate the effectiveness of the train rescheduling approaches. Finally, numerical experiments carried out on Beijing-Tianjin intercity high-speed railway show that AR-S can reduce the total delay of trains up to 24% in comparison with TR-S
    corecore