129 research outputs found

    The Analysis of Key Factors Related to ADCs Structural Design

    Get PDF
    Antibody–drug conjugates (ADCs) have developed rapidly in recent decades. However, it is complicated to map out a perfect ADC that requires optimization of multiple parameters including antigens, antibodies, linkers, payloads, and the payload-linker linkage. The therapeutic targets of the ADCs are expected to express only on the surface of the corresponding target tumor cells. On the contrary, many antigens usually express on normal tissues to some extent, which could disturb the specificity of ADCs and limit their clinical application, not to mention the antibody is also difficult to choose. It requires to not only target and have affinity with the corresponding antigen, but it also needs to have a linkage site with the linker to load the payloads. In addition, the linker and payload are indispensable in the efficacy of ADCs. The linker is required to stabilize the ADC in the circulatory system and is brittle to release free payload while the antibody combines with antigen. Also, it is a premise that the dose of ADCs will not kill normal tissues and the released payloads are able to fulfill the killing potency in tumor cells at the same time. In this review, we mainly focus on the latest development of key factors affecting ADCs progress, including the selection of antibodies and antigens, the optimization of payload, the modification of linker, payload-linker linkage, and some other relevant parameters of ADCs

    Myeloid Cell Hypoxia-Inducible Factors Promote Resolution of Inflammation in Experimental Colitis

    Get PDF
    Colonic tissues in Inflammatory Bowel Disease (IBD) patients exhibit oxygen deprivation and activation of hypoxia-inducible factor 1α and 2α (HIF-1α and HIF-2α), which mediate cellular adaptation to hypoxic stress. Notably, macrophages and neutrophils accumulate preferentially in hypoxic regions of the inflamed colon, suggesting that myeloid cell functions in colitis are HIF-dependent. By depleting ARNT (the obligate heterodimeric binding partner for both HIFα subunits) in a murine model, we demonstrate here that myeloid HIF signaling promotes the resolution of acute colitis. Specifically, myeloid pan-HIF deficiency exacerbates infiltration of pro-inflammatory neutrophils and Ly6C+ monocytic cells into diseased tissue. Myeloid HIF ablation also hinders macrophage functional conversion to a protective, pro-resolving phenotype, and elevates gut serum amyloid A levels during the resolution phase of colitis. Therefore, myeloid cell HIF signaling is required for efficient resolution of inflammatory damage in colitis, implicating serum amyloid A in this process

    MD-2 is required for disulfide HMGB1-dependent TLR4 signaling

    Get PDF
    Innate immune receptors for pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) orchestrate inflammatory responses to infection and injury. Secreted by activated immune cells or passively released by damaged cells, HMGB1 is subjected to redox modification that distinctly influences its extracellular functions. Previously, it was unknown how the TLR4 signalosome distinguished between HMGB1 isoforms. Here we demonstrate that the extracellular TLR4 adaptor, myeloid differentiation factor 2 (MD-2), binds specifically to the cytokine-inducing disulfide isoform of HMGB1, to the exclusion of other isoforms. Using MD-2–deficient mice, as well as MD-2 silencing in macrophages, we show a requirement for HMGB1-dependent TLR4 signaling. By screening HMGB1 peptide libraries, we identified a tetramer (FSSE, designated P5779) as a specific MD-2 antagonist preventing MD-2–HMGB1 interaction and TLR4 signaling. P5779 does not interfere with lipopolysaccharide-induced cytokine/chemokine production, thus preserving PAMP-mediated TLR4–MD-2 responses. Furthermore, P5779 can protect mice against hepatic ischemia/reperfusion injury, chemical toxicity, and sepsis. These findings reveal a novel mechanism by which innate systems selectively recognize specific HMGB1 isoforms. The results may direct toward strategies aimed at attenuating DAMP-mediated inflammation while preserving antimicrobial immune responsiveness

    Novel role of PKR in inflammasome activation and HMGB1 release

    Get PDF
    The inflammasome regulates release of caspase activation-dependent cytokines, including IL-1β, IL-18, and high-mobility group box 1 (HMGB1)1-5. During the course of studying HMGB1 release mechanisms, we discovered an important role of double-stranded RNA dependent protein kinase (PKR) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminum, rotenone, live E. coli, anthrax lethal toxin, DNA transfection, and S. Typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1beta, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with multiple inflammasome components, including NLR family pyrin domain-containing 3 (NLRP3), NLR family pyrin domain-containing 1 (NLRP1), NLR family CARD domain-containing protein 4 (NLRC4), Absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell free system with recombinant NLRP3, ASC and pro-casapse-1 reconstitutes inflammasome activity. These results reveal a critical role of PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation

    A Hepatic Protein, Fetuin-A, Occupies a Protective Role in Lethal Systemic Inflammation

    Get PDF
    A liver-derived protein, fetuin-A, was first purified from calf fetal serum in 1944, but its potential role in lethal systemic inflammation was previously unknown. This study aims to delineate the molecular mechanisms underlying the regulation of hepatic fetuin-A expression during lethal systemic inflammation (LSI), and investigated whether alterations of fetuin-A levels affect animal survival, and influence systemic accumulation of a late mediator, HMGB1.LSI was induced by endotoxemia or cecal ligation and puncture (CLP) in fetuin-A knock-out or wild-type mice, and animal survival rates were compared. Murine peritoneal macrophages were challenged with exogenous (endotoxin) or endogenous (IFN-γ) stimuli in the absence or presence of fetuin-A, and HMGB1 expression and release was assessed. Circulating fetuin-A levels were decreased in a time-dependent manner, starting between 26 h, reaching a nadir around 24-48 h, and returning towards base-line approximately 72 h post onset of endotoxemia or sepsis. These dynamic changes were mirrored by an early cytokine IFN-γ-mediated inhibition (up to 50-70%) of hepatic fetuin-A expression. Disruption of fetuin-A expression rendered animals more susceptible to LSI, whereas supplementation of fetuin-A (20-100 mg/kg) dose-dependently increased animal survival rates. The protection was associated with a significant reduction in systemic HMGB1 accumulation in vivo, and parallel inhibition of IFN-γ- or LPS-induced HMGB1 release in vitro.These experimental data suggest that fetuin-A is protective against lethal systemic inflammation partly by inhibiting active HMGB1 release
    • …
    corecore