135 research outputs found
A Homogenous Luminescent Proximity Assay for 14-3-3 Interactions with Both Phosphorylated and Nonphosphorylated Client Peptides
The 14-3-3 proteins are a family of dimeric eukaryotic proteins that mediate both phosphorylation-dependent and -independent protein-protein interactions. Through these interactions, 14-3-3 proteins participate in the regulation of a wide range of cellular processes, including cell proliferation, cell cycle progression, and apoptosis. Because of their fundamental importance, 14-3-3 proteins have also been implicated in a variety of diseases, including cancer and neurodegenerative disorders. In order to monitor 14-3-3/client protein interactions for the discovery of small molecule 14-3-3 modulators, we have designed and optimized 14-3-3 protein binding assays based on the amplified luminescent proximity homogeneous assay (AlphaScreen) technology. Using the interaction of 14-3-3 with a phosphorylated Raf-1 peptide and a nonphosphorylated R18 peptide as model systems, we have established homogenous “add-and-measure” high-throughput screening assays. Both assays achieved robust performance with S/B ratios above 7 and Z’ factors above 0.7. Application of the known antagonistic peptides in our studies further validated the assay for screening of chemical compound libraries to identify small molecules that can modulate 14-3-3 protein-protein interactions
Raf-1 activation disrupts its binding to keratins during cell stress
Keratins 8 and 18 (K8/18) heteropolymers may regulate cell signaling via the known K18 association with 14-3-3 proteins and 14-3-3 association with Raf-1 kinase. We characterized Raf–keratin–14-3-3 associations and show that Raf associates directly with K8, independent of Raf kinase activity or Ras–Raf interaction, and that K18 is a Raf physiologic substrate. Raf activation during oxidative and toxin exposure in cultured cells and animals disrupt keratin–Raf association in a phosphorylation-dependent manner. Mutational analysis showed that 14-3-3 residues that are essential for Raf binding also regulate 14-3-3–keratin association. Similarly, Raf phosphorylation sites that are important for binding to 14-3-3 are also essential for Raf binding to K8/18. Therefore, keratins may modulate some aspects of Raf signaling under basal conditions via sequestration by K8, akin to Raf–14-3-3 binding. Keratin-bound Raf kinase is released upon Raf hyperphosphorylation and activation during oxidative and other stresses
Dual gene activation and knockout screen reveals directional dependencies in genetic networks.
Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair. Based on the results from over 100,000 perturbed gene pairs, we reconstruct a directional dependency network for human K562 leukemia cells and demonstrate how our approach allows the determination of directionality in activating genetic interactions. Our interaction network connects previously uncharacterized genes to well-studied pathways and identifies targets relevant for therapeutic intervention
OpenIllumination: A Multi-Illumination Dataset for Inverse Rendering Evaluation on Real Objects
We introduce OpenIllumination, a real-world dataset containing over 108K
images of 64 objects with diverse materials, captured under 72 camera views and
a large number of different illuminations. For each image in the dataset, we
provide accurate camera parameters, illumination ground truth, and foreground
segmentation masks. Our dataset enables the quantitative evaluation of most
inverse rendering and material decomposition methods for real objects. We
examine several state-of-the-art inverse rendering methods on our dataset and
compare their performances. The dataset and code can be found on the project
page: https://oppo-us-research.github.io/OpenIllumination
A Dual-Readout F2 Assay That Combines Fluorescence Resonance Energy Transfer and Fluorescence Polarization for Monitoring Bimolecular Interactions
Forster (fluorescence) resonance energy transfer (FRET) and fluorescence polarization (FP) are widely used technologies for monitoring bimolecular interactions and have been extensively used in high-throughput screening (HTS) for probe and drug discovery. Despite their popularity in HTS, it has been recognized that different assay technologies may generate different hit lists for the same biochemical interaction. Due to the high cost of large-scale HTS campaigns, one has to make a critical choice to employee one assay platform for a particular HTS. Here we report the design and development of a dual-readout HTS assay that combines two assay technologies into one system using the Mcl-1 and Noxa BH3 peptide interaction as a model system. In this system, both FP and FRET signals were simultaneously monitored from one reaction, which is termed -Dual-Readout F2 assay- with F2 for FP and FRET. This dual-readout technology has been optimized in a 1,536-well ultra-HTS format for the discovery of Mcl-1 protein inhibitors and achieved a robust performance. This F2 assay was further validated by screening a library of 102,255 compounds. As two assay platforms are utilized for the same target simultaneously, hit information is enriched without increasing the screening cost. This strategy can be generally extended to other FP-based assays and is expected to enrich primary HTS information and enhance the hit quality of HTS campaigns.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90469/1/adt-2E2010-2E0292.pd
Open drug discovery in Alzheimer\u27s disease.
Alzheimer\u27s disease (AD) drug discovery has focused on a set of highly studied therapeutic hypotheses, with limited success. The heterogeneous nature of AD processes suggests that a more diverse, systems-integrated strategy may identify new therapeutic hypotheses. Although many target hypotheses have arisen from systems-level modeling of human disease, in practice and for many reasons, it has proven challenging to translate them into drug discovery pipelines. First, many hypotheses implicate protein targets and/or biological mechanisms that are under-studied, meaning there is a paucity of evidence to inform experimental strategies as well as high-quality reagents to perform them. Second, systems-level targets are predicted to act in concert, requiring adaptations in how we characterize new drug targets. Here we posit that the development and open distribution of high-quality experimental reagents and informatic outputs-termed target enabling packages (TEPs)-will catalyze rapid evaluation of emerging systems-integrated targets in AD by enabling parallel, independent, and unencumbered research
14-3-3Â Amplifies Androgen Receptor Actions in Prostate Cancer
Androgen receptor (AR) abundance and AR-regulated gene expression in castration-recurrent prostate cancer (CaP) are indicative of AR activation in the absence of testicular androgen. AR transactivation of target genes in castration-recurrent CaP occurs in part through mitogen signaling that amplifies the actions of AR and its coregulators. Herein we report on the role of 14-3-3η in AR action
Discovery of FERM domain protein-protein interaction inhibitors for MSN and CD44 as a potential therapeutic approach for Alzheimer\u27s disease.
Proteomic studies have identified moesin (MSN), a protein containing a four-point-one, ezrin, radixin, moesin (FERM) domain, and the receptor CD44 as hub proteins found within a coexpression module strongly linked to Alzheimer\u27s disease (AD) traits and microglia. These proteins are more abundant in Alzheimer\u27s patient brains, and their levels are positively correlated with cognitive decline, amyloid plaque deposition, and neurofibrillary tangle burden. The MSN FERM domain interacts with the phospholipid phosphatidylinositol 4,5-bisphosphate (PI
Modulation of Bax and mTOR for Cancer Therapeutics.
A rationale exists for pharmacologic manipulation of the serine (S)184 phosphorylation site of the proapoptotic Bcl2 family member Bax as an anticancer strategy. Here, we report the refinement of the Bax agonist SMBA1 to generate CYD-2-11, which has characteristics of a suitable clinical lead compound. CYD-2-11 targeted the structural pocket proximal to S184 in the C-terminal region of Bax, directly activating its proapoptotic activity by inducing a conformational change enabling formation of Bax homooligomers in mitochondrial membranes. In murine models of small-cell and non-small cell lung cancers, including patient-derived xenograft and the genetically engineered mutant KRAS-driven lung cancer models, CYD-2-11 suppressed malignant growth without evident significant toxicity to normal tissues. In lung cancer patients treated with mTOR inhibitor RAD001, we observed enhanced S184 Bax phosphorylation in lung cancer cells and tissues that inactivates the propaoptotic function of Bax, contributing to rapalog resistance. Combined treatment of CYD-2-11 and RAD001 in murine lung cancer models displayed strong synergistic activity and overcame rapalog resistanc
Expression Profiling and Proteomic Analysis of JIN Chinese Herbal Formula in Lung Carcinoma H460 Xenografts
Many traditional Chinese medicine (TCM) formulae have been used in cancer therapy. The JIN formula is an ancient herbal formula recorded in the classic TCM book Jin Kui Yao Lue (Golden Chamber). The JIN formula significantly delayed the growth of subcutaneous human H460 xenografted tumors in vivo compared with the growth of mock controls. Gene array analysis of signal transduction in cancer showed that the JIN formula acted on multiple targets such as the mitogen-activated protein kinase, hedgehog, and Wnt signaling pathways. The coformula treatment of JIN and diamminedichloroplatinum (DDP) affected the stress/heat shock pathway. Proteomic analysis showed 36 and 84 differentially expressed proteins between the mock and DDP groups and between the mock and JIN groups, respectively. GoMiner analysis revealed that the differentially expressed proteins between the JIN and mock groups were enriched during cellular metabolic processes, and so forth. The ones between the DDP and mock groups were enriched during protein-DNA complex assembly, and so forth. Most downregulated proteins in the JIN group were heat shock proteins (HSPs) such as HSP90AA1 and HSPA1B, which could be used as markers to monitor responses to the JIN formula therapy. The mechanism of action of the JIN formula on HSP proteins warrants further investigation
- …