1,541 research outputs found

    Orbital density wave induced by electron-lattice coupling in orthorhombic iron pnictides

    Full text link
    In this paper we explore the magnetic and orbital properties closely related to a tetragonal-orthorhombic structural phase transition in iron pnictides based on both two- and five-orbital Hubbard models. The electron-lattice coupling, which interplays with electronic interaction, is self-consistently treated. Our results reveal that the orbital polarization stabilizes the spin density wave (SDW) order in both tetragonal and orthorhombic phases. However, the ferro-orbital density wave (F-ODW) only occurs in the orthorhombic phase rather than in the tetragonal one. Magnetic moments of Fe are small in the intermediate Coulomb interaction region for the striped antiferromangnetic phase in the realistic five orbital model. The anisotropic Fermi surface in the SDW/ODW orthorhombic phase is well in agreement with the recent angle-resolved photoemission spectroscopy experiments. These results suggest a scenario that the magnetic phase transition is driven by the ODW order mainly arising from the electron-lattice coupling.Comment: 21 pages, 10 figure

    Rainfall Nowcasting by Blending of Radar Data and Numerical Weather Prediction

    Get PDF
    In order to improve conventional rainfall nowcasting, radar extrapolation and high-resolution numerical weather prediction (NWP) were blended to get a 6-h quantitative precipitation forecast (QPF) over the Yangtze River Delta region of China. Modifications and calibrations were done to both the extrapolation and NWP in order to get an integrated result from the two, which mainly included the extension for the extrapolation time and region, intensity and position calibration for the NWP, weighted blending of extrapolation and NWP based on scale and time, and a final real-time Z-R relation conversion. Forecast experiments were done, and results show that the blending technique could effectively extend forecast time compared with conventional radar extrapolation, meanwhile applying a positive calibration to the NWP. The overall CSI score of 0–6 h reflectivity forecast was better than either single forecast

    The Preparation and Bioactivity Research of Agaro-Oligosaccharides

    Get PDF
    Agaro-oligosaccharides were hydrolytically obtained from agar using hydrochloric acid, citric acid, and cationic exchange resin (solid acid). The FT-IR and NMR data showed that the hydrolysate has the structure of agaro-oligomers. Orthogonal matrix method was applied to optimize the preparation conditions based on α-naphthylamine end-labeled HPLC analysis method. The optimal way for oligosaccharides with different degree of polymerization (DP) was achieved by using solid acid degradation, which could give high yield and avoid solution neutralization process. Agaro-oligosaccharides with high purity were consequently obtained by activated carbon column isolation. Furthermore, the antioxidant and -glucosidase inhibitory activity of three fractions were also investigated. The result indicated that 8 % ethanol-eluted fraction showed highest activity against α-glucosidase with IC50 of 8.84 mg/mL, while 25 % ethanol-eluted fraction possessed excellent antioxidant ability

    Psychological Stress Alters Ultrastructure and Energy Metabolism of Masticatory Muscle in Rats

    Get PDF
    To investigate the effects of psychological stress on the masticatory muscles of rats, a communication box was applied to induce the psychological stress (PS) in rats. The successful establishment of psychological stimulation was confirmed by elevated serum levels of adrenocorticotropic hormone (ACTH) and changed behaviors in the elevated plusmaze apparatus. The energy metabolism of the bilateral masseter muscles was tested via chemocolorimetric analysis, whereas muscle ultrastructure was assessed by electron microscopy. In comparison to the control group, the PS group showed evidence of swollen mitochondria with cristae loss and reduced matrix density in the masticatory muscles after three weeks of stimulation; after five weeks of stimulation, severe vacuolar changes to the mitochondria were observed. Increased vascular permeability of the masticatory muscle capillaries was found in the five-week PS rats. In addition, there was decreased activity of Na+-K+ATPase and Ca2+-ATPase and a simultaneous increase in the activity of lactate dehydrogenase and lactic acid in the masticatory muscles of PS rats. Together, these results indicate that psychological stress induces alterations in the ultrastructure and energy metabolism of masticatory muscles in rats

    The extended BLMSSM with a 125 GeV Higgs boson and dark matter

    Full text link
    To extend the BLMSSM, we not only add exotic Higgs superfields (ΦNL,φNL)(\Phi_{NL},\varphi_{NL}) to make the exotic lepton heavy, but also introduce the superfields(YY,YY^\prime) having couplings with lepton and exotic lepton at tree level. The obtained model is called as EBLMSSM, which has difference from BLMSSM especially for the exotic slepton(lepton) and exotic sneutrino(neutrino). We deduce the mass matrices and the needed couplings in this model. To confine the parameter space, the Higgs boson mass mh0m_{h^0} and the processes h0γγh^0\rightarrow \gamma\gamma, h0VV,V=(Z,W)h^0\rightarrow VV, V=(Z,W) are studied in the EBLMSSM. With the assumed parameter space, we obtain reasonable numerical results according to data on Higgs from ATLAS and CMS. As a cold dark mater candidate, the relic density for the lightest mass eigenstate of YY and YY' mixing is also studied

    Analytical behaviour of concrete-encased CFST box stub columns under axial compression

    Full text link
    [EN] Concrete-encased CFST (concrete-filled steel tube) members have been widely used in high-rise buildings and bridge structures. In this paper, the axial performance of a typical concrete-encased CFST box member with inner CFST and outer reinforced concrete (RC) is investigated. A finite element analysis (FEA) model is established to analyze the compressive behavior of the composite member. The material nonlinearity and the interaction between concrete and steel tube are considered. A good agreement is achieved between the measured and predicted results in terms of the failure mode and the load-deformation relation. The verified FEA model is then used to conduct the full range analysis on the load versus deformation relations. The loading distributions of different components inclouding concrete, steel tube and longitudinal bar during four stages are discussed. Typical failure modes, internal force distribution, stress development and the contact stress between concrete and steel tube are also presented. The parametric study on the compressive behavior is conducted to investigate the effects of various parameters, e.g. the strength of concrete and steel, longitudinal bar ratio and stirrup space on the sectional capacity and the ductility of the concrete-encased CSFT box member.Chen, J.; Han, L.; Wang, F.; Mu, T. (2018). Analytical behaviour of concrete-encased CFST box stub columns under axial compression. En Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures. ASCCS 2018. Editorial Universitat Politècnica de València. 401-408. https://doi.org/10.4995/ASCCS2018.2018.6966OCS40140
    corecore