6,977 research outputs found
Neural self-tuning adaptive control of non-minimum phase system
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response
Folding model study of the elastic scattering at low energies
The folding model analysis of the elastic scattering at the
incident energies below the reaction threshold of 34.7 MeV (in the lab system)
has been done using the well-tested density dependent versions of the M3Y
interaction and realistic choices for the He density. Because the
absorption is negligible at the energies below the reaction threshold, we were
able to probe the optical potential at low energies quite
unambiguously and found that the overlap density used to
construct the density dependence of the M3Y interaction is strongly distorted
by the Pauli blocking. This result gives possible explanation of a
long-standing inconsistency of the double-folding model in its study of the
elastic and -nucleus scattering at low energies using
the same realistic density dependent M3Y interaction
Quantum Monte Carlo Study of Pairing Symmetry and Correlation in Iron-based Superconductors
We perform a systematic quantum Monte Carlo study of the pairing correlation
in the symmetric microscopic model for iron-based superconductors. It is
found that the pairing with an extensive s-wave symmetry robustly dominates
over other pairings at low temperature in reasonable parameter region. The
pairing susceptibility, the effective pairing interaction and the
antiferromagnetic correlation strongly increase as the on-site Coulomb
interaction increases, indicating the importance of the effect of
electron-electron correlation. Our non-biased numerical results provide a
unified understanding of superconducting mechanism in iron-pnictides and
iron-chalcogenides and demonstrate that the superconductivity is driven by
strong electron-electron correlation effects.Comment: Accepted for publication as a Letter in Physical Review Letters, and
more discussions are adde
The Topological Relation Between Bulk Gap Nodes and Surface Bound States : Application to Iron-based Superconductors
In the past few years materials with protected gapless surface (edge) states
have risen to the central stage of condensed matter physics. Almost all
discussions centered around topological insulators and superconductors, which
possess full quasiparticle gaps in the bulk. In this paper we argue systems
with topological stable bulk nodes offer another class of materials with robust
gapless surface states. Moreover the location of the bulk nodes determines the
Miller index of the surfaces that show (or not show) such states. Measuring the
spectroscopic signature of these zero modes allows a phase-sensitive
determination of the nodal structures of unconventional superconductors when
other phase-sensitive techniques are not applicable. We apply this idea to
gapless iron based superconductors and show how to distinguish accidental from
symmetry dictated nodes. We shall argue the same idea leads to a method for
detecting a class of the elusive spin liquids.Comment: updated references, 6 pages, 4 figures, RevTex
Equation of state of the neutron star matter, and the nuclear symmetry energy
The nuclear mean-field potentials obtained in the Hartree-Fock method with
different choices of the in-medium nucleon-nucleon (NN) interaction have been
used to study the equation of state (EOS) of the neutron star (NS) matter. The
EOS of the uniform NS core has been calculated for the np composition in
the -equilibrium at zero temperature, using version Sly4 of the Skyrme
interaction as well as two density-dependent versions of the finite-range M3Y
interaction (CDM3Y and M3Y-P), and versions D1S and D1N of the Gogny
interaction. Although the considered effective NN interactions were proven to
be quite realistic in numerous nuclear structure and/or reaction studies, they
give quite different behaviors of the symmetry energy of nuclear matter at
supranuclear densities that lead to the \emph{soft} and \emph{stiff} scenarios
discussed recently in the literature. Different EOS's of the NS core and the
EOS of the NS crust given by the compressible liquid drop model have been used
as input of the Tolman-Oppenheimer-Volkov equations to study how the nuclear
symmetry energy affects the model prediction of different NS properties, like
the cooling process as well as the gravitational mass, radius, and moment of
inertia.Comment: To be published in Physical Review
Network Lifetime Maximization With Node Admission in Wireless Multimedia Sensor Networks
Wireless multimedia sensor networks (WMSNs) are expected to support multimedia services such as delivery of video and audio streams. However, due to the relatively stringent quality-of-service (QoS) requirements of multimedia services (e.g., high transmission rates and timely delivery) and the limited wireless resources, it is possible that not all the potential sensor nodes can be admitted into the network. Thus, node admission is essential for WMSNs, which is the target of this paper. Specifically, we aim at the node admission and its interaction with power allocation and link scheduling. A cross-layer design is presented as a two-stage optimization problem, where at the first stage the number of admitted sensor nodes is maximized, and at the second stage the network lifetime is maximized. Interestingly, it is proved that the two-stage optimization problem can be converted to a one-stage optimization problem with a more compact and concise mathematical form. Numerical results demonstrate the effectiveness of the two-stage and one-stage optimization frameworks
Population synthesis of accreting white dwarfs: II. X-ray and UV emission
Accreting white dwarfs (WDs) with non-degenerate companions are expected to
emit in soft X-rays and the UV, if accreted H-rich material burns stably. They
are an important component of the unresolved emission of elliptical galaxies,
and their combined ionizing luminosity may significantly influence the optical
line emission from warm ISM. In an earlier paper we modeled populations of
accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red
giant companions with the population synthesis code \textsc{BSE}, and then
following their evolution with a grid of evolutionary tracks computed with
\textsc{MESA}. Now we use these results to estimate the soft X-ray
(0.3-0.7keV), H- and He II-ionizing luminosities of nuclear burning WDs and the
number of super-soft X-ray sources for galaxies with different star formation
histories. For the starburst case, these quantities peak at Gyr and
decline by orders of magnitude by the age of 10 Gyr. For stellar
ages of ~10 Gyr, predictions of our model are consistent with soft X-ray
luminosities observed by Chandra in nearby elliptical galaxies and He II
4686 line ratio measured in stacked SDSS spectra of retired
galaxies, the latter characterising the strength and hardness of the UV
radiation field. However, the soft X-ray luminosity and
He~II~4686 ratio are significantly overpredicted for stellar
ages of Gyr. We discuss various possibilities to resolve this
discrepancy and tentatively conclude that it may be resolved by a modification
of the typically used criteria of dynamically unstable mass loss for giant
stars.Comment: 13 pages, 12 figures, MNRAS accepte
Next generation population synthesis of accreting white dwarfs: I. Hybrid calculations using BSE + MESA
Accreting, nuclear-burning white dwarfs have been deemed to be candidate
progenitors of type Ia supernovae, and to account for supersoft X-ray sources,
novae, etc. depending on their accretion rates. We have carried out a binary
population synthesis study of their populations using two algorithms. In the
first, we use the binary population synthesis code \textsf{BSE} as a baseline
for the "rapid" approach commonly used in such studies. In the second, we
employ a "hybrid" approach, in which we use \textsf{BSE} to generate a
population of white dwarfs (WD) with non-degenerate companions on the verge of
filling their Roche lobes. We then follow their mass transfer phase using the
detailed stellar evolution code \textsf{MESA}. We investigate the evolution of
the number of rapidly accreting white dwarfs (RAWDs) and stably nuclear-burning
white dwarfs (SNBWDs), and estimate the type Ia supernovae (SNe Ia) rate
produced by "single-degenerate" systems (SD). We find significant differences
between the two algorithms in the predicted numbers of SNBWDs at early times,
and also in the delay time distribution (DTD) of SD SNe Ia. Such differences in
the treatment of mass transfer may partially account for differences in the SNe
Ia rate and DTD found by different groups. Adopting 100\% efficiency for helium
burning, the rate of SNe Ia produced by the SD-channel in a Milky-way-like
galaxy in our calculations is , more than an
order of magnitude below the observationally inferred value. In agreement with
previous studies, our calculated SD DTD is inconsistent with observations.Comment: 13 pages,11 figures, accepted by MNRA
- âŠ