24,052 research outputs found

    EDGE: a code to calculate diffusion of cosmic-ray electrons and their gamma-ray emission

    Full text link
    The positron excess measured by PAMELA and AMS can only be explained if there is one or several sources injecting them. Moreover, at the highest energies, it requires the presence of nearby (\simhundreds of parsecs) and middle age (maximum of \simhundreds of kyr) source. Pulsars, as factories of electrons and positrons, are one of the proposed candidates to explain the origin of this excess. To calculate the contribution of these sources to the electron and positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma rays to the Earth), a code to treat diffusion of electrons and compute their diffusion from a central source with a flexible injection spectrum. We can derive the source's gamma-ray spectrum, spatial extension, the all-electron density in space and the electron and positron flux reaching the Earth. We present in this contribution the fundamentals of the code and study how different parameters affect the gamma-ray spectrum of a source and the electron flux measured at the Earth.Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Kore

    Two-loop SUSY QCD corrections to the chargino masses in the MSSM

    Full text link
    We have calculated the two-loop strong interaction corrections to the chargino pole masses in the DRbar'-scheme in the Minimal Supersymmetric Standard Model (MSSM) with complex parameters. We have performed a detailed numerical analysis for a particular point in the parameter space and found corrections of a few tenths of a percent. We provide a computer program which calculates chargino and neutralino masses with complex parameters including the one-loop corrections and all two-loop SQCD effects.Comment: 12 pages, 11 figures, references modified, clarifications adde

    Gauge Invariant Cutoff QED

    Full text link
    A hidden generalized gauge symmetry of a cutoff QED is used to show the renormalizability of QED. In particular, it is shown that corresponding Ward identities are valid all along the renormalization group flow. The exact Renormalization Group flow equation corresponding to the effective action of a cutoff lambda phi^4 theory is also derived. Generalization to any gauge group is indicated.Comment: V1: 18 pages, 2 figures; V2: Discussions improved. Version accepted for publication in Physica Script

    Elastic Moduli of Nanoglasses and Melt-Spun Metallic Glasses by Ultrasonic Time-of-Flight Measurements

    Get PDF
    The elastic moduli of the metallic nanoglasses Fe86_{86}Sc14_{14}, Fe90_{90}Sc10_{10}, Cu58_{58}Zr42_{42}, and Cu60_{60}Zr40_{40} were determined by measuring their longitudinal and shear wave velocities together with their densities. The data were compared to the elastic moduli of the conventional meltspun metallic glass counterparts of the same chemical composition. The elastic moduli for the nanoglasses were significantly smaller than those of the metallic glass counterparts. Finally, a comparison was made between the data for nanoglasses and metallic glasses from the literature

    Elastic Moduli of Nanoglasses and Melt-Spun Metallic Glasses by Ultrasonic Time-of-Flight Measurements

    Get PDF
    The elastic moduli of the metallic nanoglasses Fe86Sc14, Fe90Sc10, Cu58Zr42, and Cu60Zr40 were determined by measuring their longitudinal and shear wave velocities together with their densities. The data were compared to the elastic moduli of the conventional melt-spun metallic glass counterparts of the same chemical composition. The elastic moduli for the nanoglasses were significantly smaller than those of the metallic glass counterparts. Finally, a comparison was made between the data for nanoglasses and metallic glasses from the literature
    corecore