350 research outputs found
Gluino Pair Production at Linear e^+e^- Colliders
We study the potential of high-energy linear colliders for the
production of gluino pairs within the Minimal Supersymmetric Standard Model
(MSSM). In this model, the process is mediated by
quark/squark loops, dominantly of the third generation, where the mixing of
left- and right-handed states can become large. Taking into account realistic
beam polarization effects, photon and -boson exchange, and current mass
exclusion limits, we scan the MSSM parameter space for various
center-of-mass energies to determine the regions, where gluino production
should be visible.Comment: 22 pages, 9 figure
Analysis of Strong-Coupling Parameters for Superfluid 3He
Superfluid He experiments show strong deviation from the weak-coupling
limit of the Ginzburg-Landau theory, and this discrepancy grows with increasing
pressure. Strong-coupling contributions to the quasiparticle interactions are
known to account for this effect and they are manifest in the five
-coefficients of the fourth order Ginzburg-Landau free energy terms. The
Ginzburg-Landau free energy also has a coefficient to include magnetic
field coupling to the order parameter. From NMR susceptibility experiments, we
find the deviation of from its weak-coupling value to be negligible at
all pressures. New results for the pressure dependence of four different
combinations of -coefficients, _{345}, _{12},
_{245}, and _{5} are calculated and comparison is made with
theory.Comment: 6 pages, 2 figures, 1 table. Manuscript prepared for QFS200
Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation
Evidence for an anomalous annual periodicity in certain nuclear decay data
has led to speculation concerning a possible solar influence on nuclear
processes. We have recently analyzed data concerning the decay rates of Cl-36
and Si-32, acquired at the Brookhaven National Laboratory (BNL), to search for
evidence that might be indicative of a process involving solar rotation.
Smoothing of the power spectrum by weighted-running-mean analysis leads to a
significant peak at frequency 11.18/yr, which is lower than the equatorial
synodic rotation rates of the convection and radiative zones. This article
concerns measurements of the decay rates of Ra-226 acquired at the
Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar
(but not identical) analysis yields a significant peak in the PTB dataset at
frequency 11.21/yr, and a peak in the BNL dataset at 11.25/yr. The change in
the BNL result is not significant since the uncertainties in the BNL and PTB
analyses are estimated to be 0.13/yr and 0.07/yr, respectively. Combining the
two running means by forming the joint power statistic leads to a highly
significant peak at frequency 11.23/yr. We comment briefly on the possible
implications of these results for solar physics and for particle physics.Comment: 15 pages, 13 figure
Precise Prediction for M_W in the MSSM
We present the currently most accurate evaluation of the W boson mass, M_W,
in the Minimal Supersymmetric Standard Model (MSSM). The full complex phase
dependence at the one-loop level, all available MSSM two-loop corrections as
well as the full Standard Model result have been included. We analyse the
impact of the different sectors of the MSSM at the one-loop level with a
particular emphasis on the effect of the complex phases. We discuss the
prediction for M_W based on all known higher-order contributions in
representative MSSM scenarios. Furthermore we obtain an estimate of the
remaining theoretical uncertainty from unknown higher-order corrections.Comment: 38 pages, 25 figures. Minor corrections, additional reference
Supersymmetric effects in top quark decay into polarized W-boson
We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak
(SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal
or transverse W-boson. The corrections are presented in terms of the
longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio
\Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both
SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1%
in magnitude and they tend to have opposite signs. The corrections to the total
width \Gamma(t-->W b) are also presented for comparison with the existing
results in the literature. We find that our SUSY-EW corrections to the total
width differ significantly from previous studies: the previous studies give a
large correction of more than 10% in magnitude for a large part of the
parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added
Mapping the Structure of Human Values through Conceptual Representations
The present research provides the first direct examination of human values through concept categorization tasks that entail judging the meaning of values. Seven studies containing data from nine samples (N = 1086) in two countries (the UK and Brazil) asked participants to compare the meaning of different values found within influential quasi-circumplex model of values. Different methods were used across experiments, including direct similarity judgment tasks, pile sorting, and spatial arrangement. The results of these diverse conceptual assessments corresponded to spatial configurations that are broadly convergent with Schwartz's model, both between and within participants
Solar Neutrino Masses and Mixing from Bilinear R-Parity Broken Supersymmetry: Analytical versus Numerical Results
We give an analytical calculation of solar neutrino masses and mixing at
one-loop order within bilinear R-parity breaking supersymmetry, and compare our
results to the exact numerical calculation. Our method is based on a systematic
perturbative expansion of R-parity violating vertices to leading order. We find
in general quite good agreement between approximate and full numerical
calculation, but the approximate expressions are much simpler to implement. Our
formalism works especially well for the case of the large mixing angle MSW
solution (LMA-MSW), now strongly favoured by the recent KamLAND reactor
neutrino data.Comment: 34 pages, 14 ps figs, some clarifying comments adde
Gluino Decays in the Complex MSSM: A Full One-Loop Analysis
We evaluate all two-body decay modes of the gluino, in the Minimal
Supersymmetric Standard Model with complex parameters (cMSSM). This constitutes
an important step in the cascade decays of SUSY particles at the LHC. The
evaluation is based on a full one-loop calculation of all two-body decay
channels, also including hard QED and QCD radiation. The dependence of the
gluino decay to a scalar quark and a quark on the relevant cMSSM parameters is
analyzed numerically. We find sizable contributions to the decay widths and
branching ratios. They are, roughly of O(5%), but can go up to +-10% or higher,
where the pure SUSY QCD contributions alone can give an insufficient
approximation to the full one-loop result. Therefore the full corrections are
important for the correct interpretation of gluino decays at the LHC. The
results will be implemented into the Fortran code FeynHiggs.Comment: 49 pages, 31 figure
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Chargino Decays in the Complex MSSM: A Full One-Loop Analysis
We evaluate two-body decay modes of charginos in the Minimal Supersymmetric
Standard Model with complex parameters (cMSSM). Assuming heavy scalar quarks we
take into account all decay channels involving charginos, neutralinos, (scalar)
leptons, Higgs bosons and Standard Model gauge bosons. The evaluation of the
decay widths is based on a full one-loop calculation including hard and soft
QED radiation. Special attention is paid to decays involving the Lightest
Supersymmetric Particle (LSP), i.e. the lightest neutralino, or a neutral or
charged Higgs boson. The higher-order corrections of the chargino decay widths
involving the LSP can easily reach a level of about \pm 10%, while the
corrections to the decays to Higgs bosons are slightly smaller, translating
into corrections of similar size in the respective branching ratios. These
corrections are important for the correct interpretation of LSP and Higgs
production at the LHC and at a future linear e+e- collider. The results will be
implemented into the Fortran code FeynHiggs.Comment: 75 pages, 43 figures. Minor corrections; version to appear in EPJC.
arXiv admin note: substantial text overlap with arXiv:1111.728
- âŠ