2,929 research outputs found

    Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model

    Get PDF
    Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and CH4 fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM-Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across seven landscape types in Utqiaġvik, Alaska: trough, low-centered polygon (LCP) center, LCP transition, LCP rim, high-centered polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM-Microbe model against static-chamber measured CO2 and CH4 fluxes in 2013 for three landscape types: trough, LCP center, and LCP rim. Model application showed that low-elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4 emissions rates with greater seasonal variations than high-elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4 emission, and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem respiration in Arctic tundra ecosystems. Modeled CH4 emissions for different microtopographic features were upscaled to the eddy covariance (EC) domain with an area-weighted approach before validation against EC-measured CH4 fluxes. The model underestimated the EC-measured CH4 flux by 20% and 25% at daily and hourly time steps, suggesting the importance of the time step in reporting CH4 flux. The strong microtopographic impacts on CO2 and CH4 fluxes call for a model-data integration framework for better understanding and predicting carbon flux in the highly heterogeneous Arctic landscape

    Hadronic production of bottom-squark pairs with electroweak contributions

    Get PDF
    We present the complete computation of the tree-level and the next-to-leading order electroweak contributions to bottom-squark pair production at the LHC. The computation is performed within the minimal supersymmetric extension of the Standard Model. We discuss the numerical impact of these contributions in several supersymmetric scenarios.Comment: 33 pages, v2: preprint numbers correcte

    Dioxin Toxicity In Vivo Results from an Increase in the Dioxin-Independent Transcriptional Activity of the Aryl Hydrocarbon Receptor

    Get PDF
    The Aryl hydrocarbon receptor (Ahr) is the nuclear receptor mediating the toxicity of dioxins -widespread and persistent pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its dimerisation partner Ahr nuclear translocator (Arnt) and entails an increased transcriptional potency of Ahr, in addition to the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively) of a single function

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Spatially-resolved electronic and vibronic properties of single diamondoid molecules

    Full text link
    Diamondoids are a unique form of carbon nanostructure best described as hydrogen-terminated diamond molecules. Their diamond-cage structures and tetrahedral sp3 hybrid bonding create new possibilities for tuning electronic band gaps, optical properties, thermal transport, and mechanical strength at the nanoscale. The recently-discovered higher diamondoids (each containing more than three diamond cells) have thus generated much excitement in regards to their potential versatility as nanoscale devices. Despite this excitement, however, very little is known about the properties of isolated diamondoids on metal surfaces, a very relevant system for molecular electronics. Here we report the first molecular scale study of individual tetramantane diamondoids on Au(111) using scanning tunneling microscopy and spectroscopy. We find that both the diamondoid electronic structure and electron-vibrational coupling exhibit unique spatial distributions characterized by pronounced line nodes across the molecular surfaces. Ab-initio pseudopotential density functional calculations reveal that the observed dominant electronic and vibronic properties of diamondoids are determined by surface hydrogen terminations, a feature having important implications for designing diamondoid-based molecular devices.Comment: 16 pages, 4 figures. to appear in Nature Material

    The FU gene and its possible protein isoforms

    Get PDF
    BACKGROUND: FU is the human homologue of the Drosophila gene fused whose product fused is a positive regulator of the transcription factor Cubitus interruptus (Ci). Thus, FU may act as a regulator of the human counterparts of Ci, the GLI transcription factors. Since Ci and GLI are targets of Hedgehog signaling in development and morphogenesis, it is expected that FU plays an important role in Sonic, Desert and/or Indian Hedgehog induced cellular signaling. RESULTS: The FU gene was identified on chromosome 2q35 at 217.56 Mb and its exon-intron organization determined. The human developmental disorder Syndactyly type 1 (SD1) maps to this region on chromosome 2 and the FU coding region was sequenced using genomic DNA from an affected individual in a linked family. While no FU mutations were found, three single nucleotide polymorphisms were identified. The expression pattern of FU was thoroughly investigated and all examined tissues express FU. It is also clear that different tissues express transcripts of different sizes and some tissues express more than one transcript. By means of nested PCR of specific regions in RT/PCR generated cDNA, it was possible to verify two alternative splicing events. This also suggests the existence of at least two additional protein isoforms besides the FU protein that has previously been described. This long FU and a much shorter isoform were compared for the ability to regulate GLI1 and GLI2. None of the FU isoforms showed any effects on GLI1 induced transcription but the long form can enhance GLI2 activity. Apparently FU did not have any effect on SUFU induced inhibition of GLI. CONCLUSIONS: The FU gene and its genomic structure was identified. FU is a candidate gene for SD1, but we have not identified a pathogenic mutation in the FU coding region in a family with SD1. The sequence information and expression analyses show that transcripts of different sizes are expressed and subjected to alternative splicing. Thus, mRNAs may contain different 5'UTRs and encode different protein isoforms. Furthermore, FU is able to enhance the activity of GLI2 but not of GLI1, implicating FU in some aspects of Hedgehog signaling

    Dealing with substantial heterogeneity in Cochrane reviews. Cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dealing with heterogeneity in meta-analyses is often tricky, and there is only limited advice for authors on what to do. We investigated how authors addressed different degrees of heterogeneity, in particular whether they used a fixed effect model, which assumes that all the included studies are estimating the same true effect, or a random effects model where this is not assumed.</p> <p>Methods</p> <p>We sampled randomly 60 Cochrane reviews from 2008, which presented a result in its first meta-analysis with substantial heterogeneity (I<sup>2 </sup>greater than 50%, i.e. more than 50% of the variation is due to heterogeneity rather than chance). We extracted information on choice of statistical model, how the authors had handled the heterogeneity, and assessed the methodological quality of the reviews in relation to this.</p> <p>Results</p> <p>The distribution of heterogeneity was rather uniform in the whole I<sup>2 </sup>interval, 50-100%. A fixed effect model was used in 33 reviews (55%), but there was no correlation between I<sup>2 </sup>and choice of model (P = 0.79). We considered that 20 reviews (33%), 16 of which had used a fixed effect model, had major problems. The most common problems were: use of a fixed effect model and lack of rationale for choice of that model, lack of comment on even severe heterogeneity and of reservations and explanations of its likely causes. The problematic reviews had significantly fewer included trials than other reviews (4.3 vs. 8.0, P = 0.024). The problems became less pronounced with time, as those reviews that were most recently updated more often used a random effects model.</p> <p>Conclusion</p> <p>One-third of Cochrane reviews with substantial heterogeneity had major problems in relation to their handling of heterogeneity. More attention is needed to this issue, as the problems we identified can be essential for the conclusions of the reviews.</p

    Superinfection Exclusion in Cells Infected with Hepatitis C Virus

    Get PDF
    Superinfection exclusion is the ability of an established virus infection to interfere with infection by a second virus. In this study, we found that Huh-7.5 cells acutely infected with hepatitis C virus (HCV) genotype 2a (chimeric strain J6/JFH) and cells harboring HCV genotype 1a, 1b, or 2a full-length or subgenomic replicons were resistant to infection with cell culture-produced HCV (HCVcc). Replicon-containing cells became permissive for HCVcc infection after treatment with an HCV-specific protease inhibitor. With the exception of cells harboring a J6/JFH-FLneo replicon, infected or replicon-containing cells were permissive for HCV pseudoparticle (HCVpp) entry, demonstrating a postentry superinfection block downstream of primary translation. The surprising resistance of J6/JFH-FLneo replicon-containing cells to HCVpp infection suggested a defect in virus entry. This block was due to reduced expression of the HCV coreceptor CD81. Further analyses indicated that J6/JFH may be toxic for cells expressing high levels of CD81, thus selecting for a CD81(low) population. CD81 down regulation was not observed in acutely infected cells, suggesting that this may not be a general mechanism of HCV superinfection exclusion. Thus, HCV establishes superinfection exclusion at a postentry step, and this effect is reversible by treatment of infected cells with antiviral compounds

    Rampant Adaptive Evolution in Regions of Proteins with Unknown Function in Drosophila simulans

    Get PDF
    Adaptive protein evolution is pervasive in Drosophila. Genomic studies, thus far, have analyzed each protein as a single entity. However, the targets of adaptive events may be localized to particular parts of proteins, such as protein domains or regions involved in protein folding. We compared the population genetic mechanisms driving sequence polymorphism and divergence in defined protein domains and non-domain regions. Interestingly, we find that non-domain regions of proteins are more frequent targets of directional selection. Protein domains are also evolving under directional selection, but appear to be under stronger purifying selection than non-domain regions. Non-domain regions of proteins clearly play a major role in adaptive protein evolution on a genomic scale and merit future investigations of their functional properties
    • …
    corecore