26,106 research outputs found

    Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe

    Get PDF
    Central galaxies make up the majority of the galaxy population, including the majority of the quiescent population at M>1010M\mathcal{M}_* > 10^{10}\mathrm{M}_\odot. Thus, the mechanism(s) responsible for quenching central galaxies plays a crucial role in galaxy evolution as whole. We combine a high resolution cosmological NN-body simulation with observed evolutionary trends of the "star formation main sequence," quiescent fraction, and stellar mass function at z<1z < 1 to construct a model that statistically tracks the star formation histories and quenching of central galaxies. Comparing this model to the distribution of central galaxy star formation rates in a group catalog of the SDSS Data Release 7, we constrain the timescales over which physical processes cease star formation in central galaxies. Over the stellar mass range 109.510^{9.5} to 1011M10^{11} \mathrm{M}_\odot we infer quenching e-folding times that span 1.51.5 to 0.5  Gyr0.5\; \mathrm{Gyr} with more massive central galaxies quenching faster. For M=1010.5M\mathcal{M}_* = 10^{10.5}\mathrm{M}_\odot, this implies a total migration time of 4 Gyrs\sim 4~\mathrm{Gyrs} from the star formation main sequence to quiescence. Compared to satellites, central galaxies take 2 Gyrs\sim 2~\mathrm{Gyrs} longer to quench their star formation, suggesting that different mechanisms are responsible for quenching centrals versus satellites. Finally, the central galaxy quenching timescale we infer provides key constraints for proposed star formation quenching mechanisms. Our timescale is generally consistent with gas depletion timescales predicted by quenching through strangulation. However, the exact physical mechanism(s) responsible for this still remain unclear.Comment: 16 pages, 11 figure

    Thermal boundary resistance at Si/Ge interfaces determined by approach-to-equilibrium molecular dynamics simulations

    Full text link
    The thermal boundary resistance of Si/Ge interfaces as been determined using approach-to-equilibrium molecular dynamics simulations. Assuming a reciprocal linear dependence of the thermal boundary resistance, a length-independent bulk thermal boundary resistance could be extracted from the calculation resulting in a value of 3.76x109^{-9} m2^2 K/W for a sharp Si/Ge interface and thermal transport from Si to Ge. Introducing an interface with finite thickness of 0.5 nm consisting of a SiGe alloy, the bulk thermal resistance slightly decreases compared to the sharp Si/Ge interface. Further growth of the boundary leads to an increase in the bulk thermal boundary resistance. When the heat flow is inverted (Ge to Si), the thermal boundary resistance is found to be higher. From the differences in the thermal boundary resistance for different heat flow direction, the rectification factor of the Si/Ge has been determined and is found to significantly decrease when the sharp interface is moderated by introduction of a SiGe alloy in the boundary layer.Comment: 7 pages, 6 figure

    Agent-Based Team Aiding in a Time Critical Task

    No full text
    In this paper we evaluate the effectiveness of agent-based aiding in support of a time-critical team-planning task for teams of both humans and heterogeneous software agents. The team task consists of human subjects playing the role of military commanders and cooperatively planning to move their respective units to a common rendezvous point, given time and resource constraints. The objective of the experiment was to compare the effectiveness of agent-based aiding for individual and team tasks as opposed to the baseline condition of manual route planning. There were two experimental conditions: the Aided condition, where a Route Planning Agent (RPA) finds a least cost plan between the start and rendezvous points for a given composition of force units; and the Baseline condition, where the commanders determine initial routes manually, and receive basic feedback about the route. We demonstrate that the Aided condition provides significantly better assistance for individual route planning and team-based re-planning

    Coccidial Infection in Neonatal Swine

    Get PDF
    Coccidia have been implicated as another of the many pathogens responsible for scours in baby pigs. The clinical syndrome begins at about 5 days to 3 weeks of age and is similar to other enteritides of neonatal swine. The pigs begin to scour and do not grow well. In some cases, a mortality of up to 50% of those affected has been noted. Negative response to antibiotics normally employed in baby pig scours is often observed as another feature of the disease

    Multi-excitonic complexes in single InGaN quantum dots

    Full text link
    Cathodoluminescence spectra employing a shadow mask technique of InGaN layers grown by metal organic chemical vapor deposition on Si(111) substrates are reported. Sharp lines originating from InGaN quantum dots are observed. Temperature dependent measurements reveal thermally induced carrier redistribution between the quantum dots. Spectral diffusion is observed and was used as a tool to correlate up to three lines that originate from the same quantum dot. Variation of excitation density leads to identification of exciton and biexciton. Binding and anti-binding complexes are discovered.Comment: 3 pages, 4 figure

    Radiochemical solar neutrino experiments, ’successful and otherwise

    Get PDF
    Abstract. Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ( 37 Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ( 71 Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous International Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled. Introduction The Standard Solar Model (SSM) that was put forth by John Bahcall and colleagues [1] is based on the concept that solar energy is the product of nuclear reactions that convert hydrogen in the Sun into helium, releasing 26 MeV of energy and producing isotopes of the chemical elements He, Li, Be, and B, and to a lesser extent, C, N, and O. In this process, electron-flavor neutrinos, ν e , are emitted in beta-decay processes. These reactions occur in a step-wise manner because the temperature in the solar core is low, ~15 million degrees Kelvin or an energy of ~ 1 keV

    Limits on nu_e and anti-nu_e disappearance from Gallium and reactor experiments

    Full text link
    The deficit observed in the Gallium radioactive source experiments is interpreted as a possible indication of the disappearance of electron neutrinos. In the effective framework of two-neutrino mixing we obtain sin22ϑ0.03\sin^{2}2\vartheta \gtrsim 0.03 and Δm20.1eV2\Delta{m}^{2} \gtrsim 0.1 \text{eV}^{2}. The compatibility of this result with the data of the Bugey and Chooz reactor short-baseline antineutrino disappearance experiments is studied. It is found that the Bugey data present a hint of neutrino oscillations with 0.02sin22ϑ0.080.02 \lesssim \sin^{2}2\vartheta \lesssim 0.08 and Δm21.8eV2\Delta{m}^{2} \approx 1.8 \text{eV}^{2}, which is compatible with the Gallium allowed region of the mixing parameters. This hint persists in the combined analyses of Bugey and Chooz data, of Gallium and Bugey data, and of Gallium, Bugey, and Chooz data.Comment: 21 pages. Final version to be published in Phys. Rev.

    Determination of Strong-Interaction Widths and Shifts of Pionic X-Rays with a Crystal Spectrometer

    Get PDF
    Pionic 3d-2p atomic transitions in F, Na, and Mg have been studied using a bent crystal spectrometer. The pionic atoms were formed in the production target placed in the external proton beam of the Space Radiation Effects Laboratory synchrocyclotron. The observed energies and widths of the transitions are E=41679(3) eV and Γ=21(8) eV, E=62434(18) eV and Γ=22(80) eV, E=74389(9) eV and Γ=67(35) eV, in F, Na, and Mg, respectively. The results are compared with calculations based on a pion-nucleus optical potential
    corecore