25,155 research outputs found

    Multi-excitonic complexes in single InGaN quantum dots

    Full text link
    Cathodoluminescence spectra employing a shadow mask technique of InGaN layers grown by metal organic chemical vapor deposition on Si(111) substrates are reported. Sharp lines originating from InGaN quantum dots are observed. Temperature dependent measurements reveal thermally induced carrier redistribution between the quantum dots. Spectral diffusion is observed and was used as a tool to correlate up to three lines that originate from the same quantum dot. Variation of excitation density leads to identification of exciton and biexciton. Binding and anti-binding complexes are discovered.Comment: 3 pages, 4 figure

    Allometric growth in the Diademodontinae (Reptilia; Therapsida); a preliminary report

    Get PDF
    Main articleThe hypothesis that many, if not all, of the South African and Zambian specimens, which have been regarded as different diademodontine genera and species, actually consitute a taxonomically homogeneous, ontogenetic growth series is tested. The principles of allometric growth were applied to this sample of fossils, which varied considerably in size and shape. The approach which was followed was exclusively morphometric. The results indicate that these specimens do represent various ontogenetic stages of a growth series of only a single species of Diademodon Seeley.Non

    Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    Get PDF
    Blade design aspects most affecting producibility and means of measurement and control of length, scallop, fullness and straightness requirements and tolerances were extensively considered. Alternate designs of the panel seams and edge reinforcing members are believed to offer advantages of seam integrity, producibility, reliability, cost and weight. Approaches to and requirements for highly specialized metalizing methods, processes and equipment were studied and identified. Alternate methods of sail blade fabrication and related special machinery, tooling, fixtures and trade offs were examined. A preferred and recommended approach is also described. Quality control plans, inspection procedures, flow charts and special test equipment associated with the preferred manufacturing method were analyzed and are discussed

    Marine bivalve geochemistry and shell ultrastructure from modern low pH environments

    Get PDF
    Abstract. Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis (from the Mediterranean) and M. edulis (from the Wadden Sea) combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island of Ischia. The shells of transplanted mussels were compared with M. edulis collected at pH ~8.2 from Sylt (German Wadden Sea). Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.</jats:p

    Fast Evaluation of Feynman Diagrams

    Get PDF
    We develop a new representation for the integrals associated with Feynman diagrams. This leads directly to a novel method for the numerical evaluation of these integrals, which avoids the use of Monte Carlo techniques. Our approach is based on based on the theory of generalized sinc (sin(x)/x\sin(x)/x) functions, from which we derive an approximation to the propagator that is expressed as an infinite sum. When the propagators in the Feynman integrals are replaced with the approximate form all integrals over internal momenta and vertices are converted into Gaussians, which can be evaluated analytically. Performing the Gaussians yields a multi-dimensional infinite sum which approximates the corresponding Feynman integral. The difference between the exact result and this approximation is set by an adjustable parameter, and can be made arbitrarily small. We discuss the extraction of regularization independent quantities and demonstrate, both in theory and practice, that these sums can be evaluated quickly, even for third or fourth order diagrams. Lastly, we survey strategies for numerically evaluating the multi-dimensional sums. We illustrate the method with specific examples, including the the second order sunset diagram from quartic scalar field theory, and several higher-order diagrams. In this initial paper we focus upon scalar field theories in Euclidean spacetime, but expect that this approach can be generalized to fields with spin.Comment: uses feynmp macros; v2 contains improved description of renormalization, plus other minor change

    Light-Trap: A SiPM Upgrade for Very High Energy Astronomy and Beyond

    Full text link
    With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier tubes (PMTs) to detect the optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. For the next generation of IACT experiments, the possibility of replacing the PMTs with Silicon photomultipliers (SiPMs) is being studied. Among the main drawbacks of SiPMs are their limited active area (leading to an increase in the cost and complexity of the camera readout) and their sensitivity to unwanted wavelengths. Here we propose a novel method to build a relatively low-cost pixel consisting of a SiPM attached to a PMMA disc doped with a wavelength shifter. This pixel collects light over a much larger area than a single standard SiPM and improves sensitivity to near-UV light while simultaneously rejecting background. We describe the design of a detector that could also have applications in other fields where detection area and cost are crucial. We present results of simulations and laboratory measurements of a pixel prototype and from field tests performed with a 7-pixel cluster installed in a MAGIC telescope camera.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea. Id:81

    Structure and Dynamics of Metalloproteins in Live Cells

    Get PDF
    X-ray absorption spectroscopy (XAS) has emerged as one of the premier tools for investigating the structure and dynamic properties of metals in cells and in metal containing biomolecules. Utilizing the high flux and broad energy range of X-rays supplied by synchrotron light sources, one can selectively excite core electronic transitions in each metal. Spectroscopic signals from these electronic transitions can be used to dissect the chemical architecture of metals in cells, in cellular components and in biomolecules at varying degrees of structural resolution. With the development of ever-brighter X-ray sources, X-ray methods have grown into applications that can be utilized to provide both a cellular image of relative distribution of metals throughout the cell as well as a high-resolution picture of the structure of the metal. As these techniques continue to grow in their capabilities and ease of use, so to does the demand for their application by chemists and biochemists interested in studying the structure and dynamics of metals in cells, in cellular organelles and in metalloproteins
    corecore