ALLOMETRIC GROWTH IN THE DIADEMODONTINAE (REPTILIA; THERAPSIDA): A PRELIMINARY REPORT

by

F. E. Grine* and B. D. Hahn⁺

* Department of Anatomy, Medical School, and

[†] Department of Applied Mathematics, University of the Witwatersrand, Johannesburg.

ABSTRACT

The hypothesis that many, if not all, of the South African and Zambian specimens, which have been regarded as different diademodontine genera and species, actually consitute a taxonomically homogeneous, ontogenetic growth series is tested. The principles of allometric growth were applied to this sample of fossils, which varied considerably in size and shape. The approach which was followed was exclusively morphometric. The results indicate that these specimens do represent various ontogenetic stages of a growth series of only a single species of *Diademodon* Seeley.

INTRODUCTION

An assemblage of moderately advanced, omnivorous-herbivorous, gomphodont cynodonts is well known from the Cynognathus Zone sediments of the Orange Free State and Cape Province, South Africa (Kitching, 1972). The most commonly occurring forms in these deposits are represented by a rather homogeneous assemblage of animals which have been grouped collectively in the subfamily Diademodontinae by Hopson and Kitching (1972). The fossil remains of these reptiles have been recovered also from the Ntawere Formation, Upper Luangwa Valley, Zambia (Kitching, 1963; Brink, 1963a), the Omingonde Mudstone Formation (Lower Etjo Beds) of South West Africa (Keyser, 1973), and also from the Linchevu locality, Shansi Province, China (Young, 1961). The Diademodontinae appear to have been late Early Triassic to early Middle Triassic in age (Du Toit, 1954; Cox, 1967; Keyser, 1973).

A plethora of genera and species of diademodontines have been named (table 1); but only a few have been based on more than fragmented or distorted specimens, and still fewer have been adequately characterized such that any one genus or species can be readily distinguished from all others. Hopson and Kitching (1972) have proposed that the vast majority of these names are junior synonyms of Diademodon tetragonus Seeley. A detailed study of the dentitions of a number of diademodontine specimens (Grine, 1976a, 1976b and 1977), which included the types of Diademodon tetragonus and D. brachytiara as well as remains which had been regarded as specimens of D. browni, D. mastacus, D. entomophonus and Gomphognathus sp., revealed that these fossils represented a dentally homogeneous group. Grine (1977) noted that the number of postcanine molariform teeth in various diademodontine specimens may vary from five to 11, dependent upon the size of the skull; and that the smaller usually possess fewer teeth than do the larger specimens. He suggested that rather than the smaller fossils being regarded (on the basis of tooth number) as specifically distinct from the larger, the smaller specimens should be considered as representing ontogenetically younger stages of development than the larger ones.

TABLE 1

List of genera and species presently included in the subfamily Diademodontinae.

Diademodon tetragonus	Seeley 1894		
brachytiara	Seeley 1894		
mastacus	Seeley 1894		
browni	Seeley 1894		
entomophonus	Seeley 1908		
platyrhinus	Broom 1913		
parringtoni	Brink 1955		
laticeps	Brink 1955		
rhodesiensis	Brink 1963		
Cynochampsa laniaria	Owen 1859		
Gomphognathus kannemeyeri	Seeley 1895		
polyphagus	Seeley 1895		
minor	Broom 1911		
haughtoni	Broili and Schröder 1935		
grossarthi	Broili and Schröder 1935		
broomi	Broili and Schröder 1935		
(Diastemodon) dimorphodon	Seeley 1908		
Octagomphus woodi	Broom 1919		
Cyclogomphodon platyrhinus	Broom 1919		
Protacmon brachyrhinus	Watson 1920		
reubsameni	Broom 1950		
Sysphinctostoma smithi	Broili and Schröder 1936		
gracilis	Broom 1950		
Cragievarus kitchingi	Brink 1965		
Titanogomphodon crassus	Keyser 1973		
Ordosiodon lincheyüensis	Young 1961		
Trirachodon browni	Broom 1915		

Brink (1963b) recorded and illustrated four specimens which had been recovered from a single "fossil pocket" on the farm Cragievar, near Burghersdorp, Cape Province. He regarded these as immature individuals of *Diademodon browni*, and noted that there "is some individual variation which could partly be accounted for in terms of growth" (1963b, p. 109).

The hypothesis entertained in this study is that many, if not all, of the 12 genera and 26 species which have been recognized for the Diademodontinae (table 1) may possibly constitute an ontogenetic, sexually dimorphic series of but a single species, *Diademodon tetragonus* Seeley. This paper constitutes a preliminary report of a much more detailed study (see Grine, Hahn and Gow, 1978).

MATERIAL AND METHODS

A series of 55 specimens (table 2) was examined. The material ranged from relatively undistorted, complete skulls (i.e. BPI. FN. 4669) to fragmented dentaries. The principles of relative (allometric) growth were applied to this sample of fossils, which varied considerably in size and shape. The approach which was followed was exclusively morphometric. A large number of variables of both the cranium and dentary were designated for measurement (fig. 1); but, due to the oftentimes fragmentary nature of the available material, there was no single specimen on which all 52 metrical characters could be recorded (see table 2). All measurements were taken with either a sliding Vernier caliper (in the cases of smaller dimensions) or the top segment of an anthropometer, and recorded to the nearest millimetre. The variables which were selected for measurement generally reflected the overall shape of the skull and its various parts rather than the configuration of individal bones or parts of bone developed from specific ossification centres.

In order to assess and describe quantitatively the processes of skull growth, the measurements were fitted to the bi-parametric power function (the equation of simple allometry):

$$\mathbf{y} = \mathbf{a}\mathbf{x}^{\beta} \tag{1}$$

where y is the variable whose increase relative to that of another variable is considered, x is a different dimension of the same skeletal complex, a is a numerical constant and β is the slope of the rectilinear plot (or simply the ratio of the specific growth rates of

> oicanine breadth ickness

height of maxilla

ameal breadth

height of jugal

width

height of corpus of dentary

diameter of maxillary canine

al diameter of maxillary canine

diameter of mandibular canine

al diameter of mandibular canine

base

eadth ight ture length nagnum height nagnum breadth

intercorporal breadth symphysial breadth symphysial breadth r bicanine breadth post-temporal height

height of mid-temporal crest above

height of postorbital above maxillary

Figure 1. Diademodontid skull measurements (see opposite page)

A, norma verticalis; B, norma basalis; C, norma lateralis; D, norma occipitalis; E, norma verticalis of dentary; F, norma lateralis of lower jaw.

Variable	Description		
1	Basal skull length	30	Maxillary I
2	Total skull length	31	Dentary th
3	Pre-orbital length	32	Minimum
4	Pre-orbital basal length	33	Minimum
5	Pre-orbital total length	34	Maximum
6	Cranial masticatory length	35	Mandibula
7	Cranial postcanine masticatory length	36	Maximum
8	Hard palate length	37	Maximum
9	Temporal fossa length		maxillary h
10	Cranial length to back of jugal flange	38	Maximum
11	Cranial length to posterolateral edge of jugal		base
12	Total dentary length	39	Maximum
13	Dentary length of coronoid process	40	Maximum
14	Dentary length to angle	41	Projected 1
15	Mandibular masticatory length	42	Orbital bro
16	Mandibular postcanine masticatory length	43	Orbital he
17	Symphyseal length	44	Nasal aper
18	Total cranial width	45	Foramen r
19	Cranial width across jugal flanges	46	Foramen n
20	Interorbital width	47	Mesiodista
21	Least snout width		(or socket)
22	Greatest snout width	48	Buccolingu
23	Parietal width coincident with pineal foramen		(or socket)
24	Temporal fossa width	49	Mesiodistal
25	Bicondylar breadth		(or socket)
26	Post-temporal breadth	50	Buccolingu
27	Width between post-temporal foramina		(or socket)
28	Greatest breadth of maxillary tooth rows	51	Maximum
29	Least breadth of maxillary tooth rows	52	Pterygoid v

TABLE 2

List of specimens measured. V, number of mensurable parameters recorded; BPI.FN., Bernard Price Institute for Palaeontological Research Field Number; G.S., Geological Survey, Pretoria; N.M., National Museum, Bloemfontein.

Specimen	Museum No	Provious taxonomic designation	Specimen	V
specimen	Wiuscum No.	Frevious taxonomic designation	description	V
1	BPI.FN.3754	Diademodon grossarthi	Cranium	36
2	BPI.FN.3639	Diademodon rhodesiensis (type)	Skull	42
3	BPI.FN.2522	Diademodon mastacus	Cranium	29
4	BPI.FN.3757	Diademodon haughtoni	Snout	14
5	BPI.FN.4669	Diademodon sp.	Skull	46
6	G.S. R.322	Titanogomphodon crassus (type)	Cranium	7
7	BPI.FN.1695	Diademodon sp.	Snout	13
8	BPI.FN.1195	Diademodon broomi	Cranium	18
9	G.S. R.530		Cranium	17
10	BPI.FN.3758	Diademodon browni	Skull	40
11	BPI.FN.1177	Diademodon sp.	Skull	14
12	BPI.FN.3756	Diademodon mastacus	Skull	40
13	BPI.FN.3769	Diademodon browni	Skull	39
14	BPI.FN.3773	Diademodon browni	Cranium	34
15	BPI.FN.3772	Diademodon browni	Cranium	33
10	BPI.FIN.4528	Diaaemoaon sp.	Snout, dentary	15
17	DP1.FIN.2019	Cyclogomphoaon playmanus	Shout, dentary	21
10	G.S. K.331	Diadamadan an	Cranium dentary	17
20	BDI EN 8771	Diademodon sp.	Shull	25
20	BPI FN 87762	Cragiguarus kitchingi (tape)	Skull	25
21	BPI FN 4658	Diademodon browni	Skull	40
22	BPI FN 8511	Diademodon browni	Skull	36
20	BPI FN 4590	Diademodon sp	Shout dentary	0
25	BPI Fn 1169	Dutternouver sp.	Shull	8
26	G S R 483		Skull	19
20	G.S. R 397	Diademodon tetragonus	Dentary	13
28	G.S. R 321	Diademodon tetragonus	Dentary	7
29	G.S. R.321a	Diademodon tetragonus	Dentary	11
30	G.S. R.321b	Diademodon tetragonus	Dentary	11
31	G.S. R.321c	Diademodon tetragonus	Dentary	15
32	G.S. R.321d	Diademodon tetragonus	Dentary	3
33	G.S. R.319	Titanogomphodon cf crassus	Symphysis	7
34	BPI.FN.2666	Diademodon sp.	Dentary	10
35	N.M. C2707-30	Diademodon entomophonus	Dentary	12
36	N.M. C2707-31	Diademodon entomophonus	Dentary	12
37	N.M. C2707-32	Diademodon entomophonus	Dentary	7
38	N.M. C2705–33	Diademodon entomophonus	Dentary	15
39	N.M. C2705–34	Diademodon entomophonus	Dentary	3
40	N.M. C2706–35	Diademodon entomophonus	Dentary	10
41	N.M. C2705–36	Diademodon entomophonus	Dentary	15
42	N.M. C2707–37	Diademodon entomophonus	Dentary	3
43	N.M. C2707a	Diademodon entomophonus	Dentary	9
44	N.M. C2707b	Diademodon entomophonus	Dentary	10 +
45	N.M. C2707t	Diademodon entomophonus	Dentary	9
46	N.M. C2707h	Diademodon entomophonus	Dentary	14
47	N.M. C2706–50	Diademodon entomophonus	Dentary	8
48	N.M. C2706-51	Diademodon entomophonus	Dentary	13
49	N.M. C2707-1	Diademodon entomophonus	Dentary	13
50	N.M. C2707-2	· Diademodon entomophonus	Dentary	12
51	N.M. C2707	Diademodon entomophonus	Dentary	6
52	N.M. C2705-8	Diademodon entomophonus	Dentary	9
33 EA	N.M. C2705-12 N.M. C2700	Diademodon entomophonus	Dentary	15
55	N.M. C2709	Diademodon entomophonus	Dentary	14
35	IV.IM. 02709a	Diademodon entomophonus	Demary	14

variables x and y). If equation (1) is converted to logarithms, then curvilinear growth relationships become linear, and the problem is reduced to the fitting of a straight line, thus:

$$\log y = \log a + \beta \log x \tag{2}$$

Equation (2) may be rewritten as

$$Y = \alpha + \beta X \tag{3}$$

where $Y = \log y$, $X = \log x$ and $\alpha = \log a$. With the establishment of linear relationships any line-fitting technique may be used to determine the slope. The slope of the "best straight line" through the data is regarded as the allometric coefficient.

Kermack and Haldane (1950) and Kermack (1954) have cautioned against the use of regression models which assume error to be related to only a single variable. The fitting procedure utilized here was that of Bartlett's best fit (Bartlett, 1949). This method has been recommended for analysis of allometric growth by Simpson, Roe and Lewontin (1960) and has been so used by Kidwell and Chase (1967) and by Dodson (1976).

Specimen	L	I V	v	V
INO.	Log X	Log Y	X	Y
23	3,85	3,33	47	28
12	4,30	4,19	74	66
13	4,52	4,17	92	65
22	4,62	4,62	101	71
14	4,72	4,53	112	93
10	4,90	4,74	134	115
15	4,96	4,74	142	115
5	5,18	4,87	177	130
2	5,44	4,97	230	144
1	5,62	5,53	275	253
3	5,66	5,33	287	207

 $\beta = 1,005 \pm 0,21$

 $\alpha = -0,303 \pm 0,10$

If the estimates of α and β are to be of any value, confidence intervals must be calculated. Formulae for the calculation of these, and of the values of α and β , have been presented by Simpson *et al.* (1960) and will not be repeated here. In all results presented below, the upper and lower 95 per cent confidence limits for α and β have been calculated. Further analysis of our data will be approached through the utilization of multivariate techniques (see Grine, Hahn and Gow, 1978).

RESULTS

As most of the fossil specimens consisted of less than complete skulls, more than one mensurable character was used as the comparative base value x. The following parameters were used as x values:

- (1) Basal skull length
- (3) Pre-orbital length
- (4) Pre-orbital basal length
- (14) Dentary length to angle
- (17) Symphysial length
- (21) Least snout width

Figure 3

Specimen				
No.	Log X	Log Y	Х	Y
23	3,85	3,14	47	23
12	4,30	3,66	74	39
20	4,43	3,58	84	36
13	4,52	3,81	92	45
22	4,62	3,66	101	39
14	4,72	3,87	112	48
10	4,90	4,01	134	55
15	4,96	4,06	142	58
5	5,18	4,42	177	83
2	5,44	4,58	230	98
1	5,62	4,87	275	130
3	5,66	4,95	287	141

 $\beta = 0,964 \pm 0,09$

 $\alpha = -0.625 \pm 0.04$

166

All of the available measurements for each specimen were compared and plotted in a bivariate manner with each of the above base values.

Due to limitations of space, only two bivariate plots are presented here (figs. 2 and 3). Comparisons of variables 18 (Total cranial width) and 3 (Preorbital length) with variable 1 (Basal length) for some 11 and 12 crania respectively, indicate isometric or near isometric growth (allometric coefficients of 1,0 and 0,96 respectively). The logarithmic values of x and y, and the α and β values for each plot are presented. The amount of variability appears to be somewhat higher for cranial width than for preorbital length. Although the allometric coefficient for pre-orbital/basal length (0,96) appears to indicate isometric growth, Dodson (1975) found that for Alligator mississipiensis coefficients as close to isometry as 0.98 were significantly different from 1.0 at p =0,05. For convenience, the specimen numbers (see table 2) have been placed next to their respective points on the plots. Both comparisons indicate a growth series extending from the smallest Diademodon specimen known (No. 23, BPI.FN. 3511) to the third largest fossil in the present sample (No. 3, BPI.FN. 2522). This series includes crania which have been regarded as specimens of D. browni, D. Mastacus and D. (Gomphognathus) rhodesiensis (the type specimen). Clearly, all of these crania can be accommodated in a single growth series according to these two (and at least some 25 other) bivariate cranial plots.

DISCUSSION

The preliminary results of this investigation lend support to the contention that many, if not all, of the South African and Zambian specimens which have been regarded as different diademodontine genera and species may constitute a taxonomically homogeneous growth series. The fossils from South Africa and Zambia probably represent various ontogenetic stages of a growth series of only a single species, Diademodon tetragonus. The possibility that this animal evinced sexual dimorphism will be examined fully in a later study (Grine, Hahn and Gow, 1978). Perhaps those specimens from South West Africa and China may be part of a phylogenetic growth series. The confirmation or refutation of these hypotheses, however, must await study of a larger series (including the type specimens) of these animals. This quantitative approach, combined with detailed morphological observations, may help to alleviate the taxonomic confusion which currently prevails in the literature on this group of Triassic mammal-like reptiles.

ACKNOWLEDGEMENTS

Grateful acknowledgement is made of the kindness extended by Dr. J. W. Kitching, Dr. A. W. Keyser and Mr. J. van Heerden, in the loan of specimens in their care. Dr. C. E. Gow was of invaluable assistance in the recording of some 960 measurements. All computing and plotting was done on the I.B.M. 370/158 of the Computer Centre, University of the Witwatersrand, Johan-nesburg. We thank Professor P. V. Tobias for reading this manuscript, and for his invaluable criticisms and advice.

REFERENCES

- BARTLETT, M. S. (1949). Fitting a straight line when both variables are subject to error. Biometrika, 5, 207-212.
- BRINK, A. S. (1963a). Two cynodonts from the N'tawere Formation in the Luangwa Valley of Northern Rhodesia. Palaeont. afr., 8, 77-96.
- -- (1963b). Notes on some new Diademodon specimens in the collection of the Bernard Price Institute. Palaeont. afr., 8, 97-111.
- COX, C. B. (1967). Changes in terrestrial vertebrate faunas during the Mesozoic. The Fossil Record, a Symposium with Documentation. Geol. Soc. Lond., 77-89.
- DODSON, P. (1975). Function and ecological significance of relative growth in Alligator. J. Zool. Lond., 175, 315-355. --- (1976). Quantitative aspects of relative growth and
- sexual dimorphism in Protoceratops. J. Paleont., 50, 929-940.
- DU TOIT, A. L. (1954). The Geology of South Africa. Oliver and Boyd, London.
- GRINE, F. E. (1976a). Postcanine (gomphodont) tooth wear in the mammal-like reptile Diademodon: a scanning electron microscope (SEM) study. Proc. Electron Micro. Soc. S. Afr., 6, 51-52.
- --- (1976b). A scanning electron microscope analysis of postcanine wear facets in the gomphodont cynodont Diademodon (Reptilia; Therapsida). Proc. 1976 Cong., S. Afr. Assoc. Advanc. Sci., vol. I, 209-216.
- -, HAHN, B. D. and GOW, C. E. (1978). Aspects of relative growth and variability in Diademodon (Reptilia; Therapsida). S. Afr. J. Sci., 74, 50-58.

- (1977). Postcanine tooth function and jaw movement in the gomphodont cynodont Diademodon (Reptilia; Therapsida). Palaeont. afr., 20, 123-135.
- HOPSON, J. A. and KITCHING, J. W. (1972). A revised classification of Cynodonts (Reptilia; Therapsida). Palaeont. afr., 14, 71-85.
- KERMACK, K. A. (1954). A biometrical study of Micraster coranuinum and M. (Isomicraster) senoensis. Phil. Trans. Roy. Soc. (B), 237, 375-428.
- ——— and HALDANE, J. B. S. (1950). Organic correlation and allometry. *Biometrika*, 37, 30–41.
- KEYSER, A. W. (1973). A new Triassic vertebrate fauna from South West Africa. Palaeont. afr., 16, 1–15. KIDWELL, J. K. and CHASE, H. B. (1967). Fitting the allome-
- tric equation a comparison of ten methods by computer simulation. Growth, 31, 165-179.
- KITCHING, J. W. (1963). The fossil localities and mammal-like reptiles of the Upper Luangwa Valley, Northern Rhodesia. S. Afr. J. Sci., 59, 259-264.
- (1972). On the distribution of the Karroo vertebrate fauna with special reference to certain genera and the bearing of this distribution on the zoning of the Beaufort beds. Ph.D. Thesis, University of the Witwatersrand, Johannesburg. 1-127, 1-256.
- SIMPSON, G. G., ROE, A. and LEWONTIN, R. C. (1960). Quantitative Zoology. 2nd ed. Harcourt, World and Brace, New York. 1-440.
- YOUNG, C. C. (1961). On a new cynodont from NW Shansi. Vert. palasiat., 1961(2), 111-114.