87 research outputs found
Recommended from our members
E x B shearing rate in quasi-symmetric plasmas
The suppression of turbulence by the E x B shear is studied in systems with quasi-symmetry using the nonlinear analysis of eddy decorrelation previously utilized in finite aspect ratio tokamak plasmas. The analytically derived E x B shearing rate which contains the relevant geometric dependence can be used for quantitative assessment of the fluctuation suppression in stellarators with quasi-symmetry
Recommended from our members
Role of flow shear in enhanced core confinement regimes
The importance of the ExB flow shear in various enhanced confinement regimes is discussed in terms of the turbulence suppression criterion in toroidal geometry. This criterion is then further generalized to include the poloidal angle dependence of the equilibrium electrostatic potential. The implication of the recently observed in-out asymmetry in the fluctuation behavior in DIII-D VH-mode is discussed
Recommended from our members
Size Scaling of Turbulent Transport in Magnetically Confined Plasmas
Transport scaling with respect to device size in magnetically confined plasmas is critically examined for electrostatic ion temperature gradient turbulence using global gyrokinetic particle simulations. It is found, by varying device size normalized by ion gyroradius while keeping other dimensionless plasma parameters fixed, that fluctuation scale length is microscopic in the presence of zonal flows. The local transport coefficient exhibits a gradual transition from a Bohm-like scaling for device sizes corresponding to present-day experiments to a gyro-Bohm scaling for future larger devices
Physics of zonal flows
Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as "drift wave-zonal flow turbulence." In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress
Physics of Zonal Flows
Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as "drift wave-zonal flow turbulence." In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress
ELM triggering conditions for the integrated modeling of H-mode plasmas
Recent advances in the integrated modeling of ELMy H-mode plasmas are
presented. A model for the H-mode pedestal and for the triggering of ELMs
predicts the height, width, and shape of the H-mode pedestal and the frequency
and width of ELMs. Formation of the pedestal and the L-H transition is the
direct result of ExB flow shear suppression of anomalous transport. The
periodic ELM crashes are triggered by either the ballooning or peeling MHD
instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to
derive a new parametric expression for the peeling-ballooning threshold. The
new dependence for the peeling-ballooning threshold is implemented in the ASTRA
transport code. Results of integrated modeling of DIII-D like discharges are
presented and compared with experimental observations. The results from the
ideal MHD stability codes are compared with results from the resistive MHD
stability code NIMROD.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
- …