221 research outputs found
Asymptotic analysis of dissipative waves with applications to their numerical simulation
Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented
Consistency and convergence for numerical radiation conditions
The problem of imposing radiation conditions at artificial boundaries for the numerical simulation of wave propagation is considered. Emphasis is on the behavior and analysis of the error which results from the restriction of the domain. The theory of error estimation is briefly outlined for boundary conditions. Use is made of the asymptotic analysis of propagating wave groups to derive and analyze boundary operators. For dissipative problems this leads to local, accurate conditions, but falls short in the hyperbolic case. A numerical experiment on the solution of the wave equation with cylindrical symmetry is described. A unified presentation of a number of conditions which have been proposed in the literature is given and the time dependence of the error which results from their use is displayed. The results are in qualitative agreement with theoretical considerations. It was found, however, that for this model problem it is particularly difficult to force the error to decay rapidly in time
Asymptotic boundary conditions for dissipative waves: General theory
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed
Conditions at the downstream boundary for simulations of viscous incompressible flow
The proper specification of boundary conditions at artificial boundaries for the simulation of time-dependent fluid flows has long been a matter of controversy. A general theory of asymptotic boundary conditions for dissipative waves is applied to the design of simple, accurate conditions at downstream boundary for incompressible flows. For Reynolds numbers far enough below the critical value for linear stability, a scaling is introduced which greatly simplifies the construction of the asymptotic conditions. Numerical experiments with the nonlinear dynamics of vortical disturbances to plane Poiseuille flow are presented which illustrate the accuracy of our approach. The consequences of directly applying the scalings to the equations are also considered
Exact Boundary Conditions at an Artificial Boundary for Partial Differential Equations in Cylinders
The numerical solution of partial differential equations in unbounded domains requires a finite computational domain. Often one obtains a finite domain by introducing an artificial boundary and imposing boundary conditions there. This paper derives exact boundary conditions at an artificial boundary for partial differential equations in cylinders. An abstract theory is developed to analyze the general linear problem. Solvability requirements and estimates of the solution of the resulting finite problem are obtained by use of the notions of exponential and ordinary dichotomies. Useful representations of the boundary conditions are derived using separation of variables for problems with constant tails. The constant tail results are extended to problems whose coefficients obtain limits at infinity by use of an abstract perturbation theory. The perturbation theory approach is also applied to a class of nonlinear problems. General asymptotic formulas for the boundary conditions are derived and displayed in detail
The Numerical Calculation of Traveling Wave Solutions of Nonlinear Parabolic Equations
Traveling wave solutions have been studied for a variety of nonlinear parabolic problems. In the initial value approach to such problems the initial data at infinity determines the wave that propagates. The numerical simulation of such problems is thus quite difficult. If the domain is replaced by a finite one, to facilitate numerical computations, then appropriate boundary conditions on the "artificial" boundaries must depend upon the initial data in the discarded region. In this work we derive such boundary conditions, based on the Laplace transform of the linearized problems at ±∞, and illustrate their utility by presenting a numerical solution of Fisher’s equation which has been proposed as a model in genetics
Accurate boundary conditions for exterior problems in gas dynamics
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory
- …