5,612 research outputs found

    Sum rules for e+e−→W+W−e^+e^- \to W^+W^- helicity amplitudes from BRS invariance

    Get PDF
    The BRS invariance of the electroweak gauge theory leads to relationships between amplitudes with external massive gauge bosons and amplitudes where some of these gauge bosons are replaced with their corresponding Nambu-Goldstone bosons. Unlike the equivalence theorem, these identities are exact at all energies. In this paper we discuss such identities which relate the process e+e−→W+W−e^+e^- \to W^+W^- to W±χ∓W^\pm\chi^\mp and χ+χ−\chi^+\chi^- production. By using a general form-factor decomposition for e+e−→W+W−e^+e^- \to W^+W^-, e+e−→W±χ∓e^+e^- \to W^\pm \chi^\mp and e+e−→χ+χ−e^+e^- \to \chi^+\chi^- amplitudes, these identities are expressed as sum rules among scalar form factors. Because these sum rules may be applied order by order in perturbation theory, they provide a powerful test of higher order calculations. By using additional Ward-Takahashi identities we find that the various contributions are divided into separately gauge-invariant subsets, the sum rules applying independently to each subset. After a general discussion of the application of the sum rules we consider the one-loop contributions of scalar-fermions in the Minimal Supersymmetric Standard Model as an illustration.Comment: 37 pages, including 16 figure

    Monte Carlo integration on GPU

    Get PDF
    We use a graphics processing unit (GPU) for fast computations of Monte Carlo integrations. Two widely used Monte Carlo integration programs, VEGAS and BASES, are parallelized on GPU. By using W+W^{+} plus multi-gluon production processes at LHC, we test integrated cross sections and execution time for programs in FORTRAN and C on CPU and those on GPU. Integrated results agree with each other within statistical errors. Execution time of programs on GPU run about 50 times faster than those in C, and more than 60 times faster than the original FORTRAN programs.Comment: 6 pages, 2 figure

    Calculation of HELAS amplitudes for QCD processes using graphics processing unit (GPU)

    Get PDF
    We use a graphics processing unit (GPU) for fast calculations of helicity amplitudes of quark and gluon scattering processes in massless QCD. New HEGET ({\bf H}ELAS {\bf E}valuation with {\bf G}PU {\bf E}nhanced {\bf T}echnology) codes for gluon self-interactions are introduced, and a C++ program to convert the MadGraph generated FORTRAN codes into HEGET codes in CUDA (a C-platform for general purpose computing on GPU) is created. Because of the proliferation of the number of Feynman diagrams and the number of independent color amplitudes, the maximum number of final state jets we can evaluate on a GPU is limited to 4 for pure gluon processes (gg→4ggg\to 4g), or 5 for processes with one or more quark lines such as qqˉ→5gq\bar{q}\to 5g and qq→qq+3gqq\to qq+3g. Compared with the usual CPU-based programs, we obtain 60-100 times better performance on the GPU, except for 5-jet production processes and the gg→4ggg\to 4g processes for which the GPU gain over the CPU is about 20

    Probing the Weak Boson Sector in γe→Ze\gamma e\rightarrow Ze

    Full text link
    We study possible deviations from the standard model in the reaction γe→Ze\gamma e\rightarrow Ze at a 500 GeV e+e−e^+e^- collider. As a photon source we use a laser backscattered photon beam. We investigate the most general γZγ\gamma Z\gamma and γZZ\gamma ZZ vertices including operators up to energy-dimension-six which are Lorentz invariant. These vertices require four extra parameters; two are CP-conserving, h1γh^\gamma_1 and h1Zh^Z_1, and two are CP-violating, h2γh^\gamma_2 and h2Zh^Z_2. We present analytical expressions of the helicity amplitudes for the process γe→Ze\gamma e\rightarrow Ze for arbitrary values of anomalous couplings. Assuming Standard Model values are actually measured we present the allowed region in the (h1γ,h1Zh^\gamma_1,h^Z_1) plane at the 90\% confidence level. We then show how the angular correlation of the ZZ decay products can be used to extract detailed information on the anomalous (especially CP-violating) γZγ\gamma Z\gamma and γZZ\gamma ZZ couplings.Comment: Latex, 25 pages, 12 figures (not included). One compressed postscript file including all the figures available at ftp://ftp.kek.jp/kek/preprints/TH/TH-420/kekth420.ps.g

    Prospects of Measuring General Higgs Couplings at e^+e^- Linear Colliders

    Get PDF
    We examine how accurately the general HZV couplings, with V=Z,gamma, may be determined by studying e^+e^- --> Hff-bar processes at future e^+e^- linear colliders. By using the optimal-observable method, which makes use of all available experimental information, we find out which combinations of the various HZV coupling terms may be constrained most efficiently with high luminosity. We also assess the benefits of measuring the tau-lepton helicities, identifying the bottom-hadron charges, polarizing the electron beam and running at two different collider energies. The HZZ couplings are generally found to be well constrained, even without these options, while the HZ-gamma couplings are not. The constraints on the latter may be significantly improved by beam polarization.Comment: 28 pages (LaTeX), 5 figures (axodraw and eps

    One-loop contributions of charginos and neutralinos to W-pair production in E+ E- collisions

    Get PDF
    We study the one-loop effects of charginos and neutralinos on the helicity amplitudes for \eeww in the minimal supersymmetric standard model. The calculation is tested by using two methods. First, the sum rule for the form factors between \eeww and the process where the external W±W^\pm bosons are replaced by the corresponding Goldstone bosons ω±\omega^\pm is employed to test the analytic expression and the accuracy of the numerical program. Second, the decoupling property in the large mass limit is used to test the overall normalization of the amplitudes. These two tests are most effectively carried out when the amplitudes are expanded in terms of the modified minimal subtraction (MSˉ\bar{\rm MS}) couplings of the standard model. The resulting perturbation expansion is valid at collider energies below and around the threshold of the light supersymmetric particles. We find that the corrections to the cross section of the longitudinally polarized WW-pair production can be as large as -1.4% at the threshold of the light chargino-pair production for large scattering angles. We also study the effects of the CP-violating phase in the chargino and neutralino sectors on the helicity amplitudes. We find that the resulting CP-violating asymmetries can be at most 0.1%.Comment: 30 pages, 25 figures, Final verision, To appear in Physical Review D, Several sentences are improve

    Origin of the second coherent peak in the dynamical structure factor of an asymmetric spin-ladder

    Full text link
    Appearance of the second coherent peak in the dynamical structure factor of an asymmetric spin ladder is suggested. The general arguments are confirmed by the first order (with respect to the asymmetry) calculation for a spin ladder with singlet-rung ground state. Basing on this result a new interpretation is proposed for the inelastic neutron scattering data in the spin gap compound CuHpCl.Comment: 11 page

    Consequences of a Possible Di-Gamma Resonace at TRISTAN

    Full text link
    If high mass di-gamma events observed at LEP are due to the production of a di-gamma resonance via its leptonic coupling, its consequences can be observed at TRISTAN. We find that a predicted ZZ decay branching rate is too small to account for the observed events if the resonance spin is zero, due to a strong cancellation in the decay amplitudes. Such a cancellation is absent if the resonance has a spin two. We study the consequences of a tensor production in the processes e+e−→e+e−e^+e^- \to e^+e^-, ÎŒ+Ό−\mu^+\mu^- and γ γ\gamma\,\gamma at TRISTAN energies. Complete helicity amplitudes with tensor boson exchange contributions are given, and the signal can clearly be identified from various distributions. TRISTAN experiments are also sensitive to the virtual tensor boson exchange effects, which reduce to the contact interaction terms in the high mass limit.Comment: 23 pages in revtex, 7 figures (not included) available upon request, KEK-TH-35

    Jet-disturbed molecular gas near the Seyfert 2 nucleus in M51

    Full text link
    Previous molecular gas observations at arcsecond-scale resolution of the Seyfert 2 galaxy M51 suggest the presence of a dense circumnuclear rotating disk, which may be the reservoir for fueling the active nucleus and obscures it from direct view in the optical. However, our recent interferometric CO(3-2) observations show a hint of a velocity gradient perpendicular to the rotating disk, which suggests a more complex structure than previously thought. To image the putative circumnuclear molecular gas disk at sub-arcsecond resolution to better understand both the spatial distribution and kinematics of the molecular gas. We carried out CO(2-1) and CO(1-0) line observations of the nuclear region of M51 with the new A configuration of the IRAM Plateau de Bure Interferometer, yielding a spatial resolution lower than 15 pc. The high resolution images show no clear evidence of a disk, aligned nearly east-west and perpendicular to the radio jet axis, as suggested by previous observations, but show two separate features located on the eastern and western sides of the nucleus. The western feature shows an elongated structure along the jet and a good velocity correspondence with optical emission lines associated with the jet, suggesting that this feature is a jet-entrained gas. The eastern feature is elongated nearly east-west ending around the nucleus. A velocity gradient appears in the same direction with increasingly blueshifted velocities near the nucleus. This velocity gradient is in the opposite sense of that previously inferred for the putative circumnuclear disk. Possible explanations for the observed molecular gas distribution and kinematics are that a rotating gas disk disturbed by the jet, gas streaming toward the nucleus, or a ring with another smaller counter- or Keplarian-rotating gas disk inside.Comment: 5 pages, 4 figures, to appear in A&A Letters Special Issue for the new extended configuration at the IRAM PdB
    • 

    corecore