23 research outputs found

    Experimental variable effects on laser heating of inclusions during Raman spectroscopic analysis

    Get PDF
    Raman spectroscopy for fluid, melt, and mineral inclusions provides direct insight into the physicochemical conditions of the environment surrounding the host mineral at the time of trapping. However, the obtained Raman spectral characteristics such as peak position are modified because of local temperature enhancement of the inclusions by the excitation laser, which might engender systematic errors and incorrect conclusions if the effect is not corrected. Despite the potentially non-negligible effects of laser heating, the laser heating coefficient (B) (°C/mW) of inclusions has remained unsolved. For this study, we found B from experiments and heat transport simulation to evaluate how various parameters such as experimental conditions, mineral properties, and inclusion geometry affect B of inclusions. To assess the parameters influencing laser heating, we measured B of a total of 19 CO2-rich fluid inclusions hosted in olivine, orthopyroxene, clinopyroxene, spinel, and quartz. Our results revealed that the measured B of fluid inclusions in spinel is highest (approx. 6 °C/mW) and that of quartz is lowest (approx. 1 × 10−2 °C/mW), consistent with earlier inferences. Our simulation results show that the absorption coefficient of the host mineral is correlated linearly with B. It is the most influential parameter when the absorption coefficient of the host mineral (αh) is larger than that of an inclusion (αinc). Furthermore, although our results indicate that both the inclusion size and depth have little effect on B if αh > αinc, the thickness and radius of the host mineral slightly influence B. These results suggest that the choice of inclusion size and depth to be analyzed in a given sample do not cause any systematic error in the Raman data because of laser heating, but the host radius and thickness, which can be adjusted to some degree at the time of sample preparation, can cause systematic errors between samples.Our results demonstrate that, even with laser power of 10 mW, which is typical for inclusion analysis, the inclusion temperature rises to tens or hundreds of degrees during the analysis, depending especially on the host mineral geometry and optical properties. Therefore, correction of the heating effects will be necessary to obtain reliable data from Raman spectroscopic analysis of inclusions. This paper presents some correction methods for non-negligible effects of laser heating

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Temperature dependence of a Raman CO2 densimeter from 23 degrees C to 200 degrees C and 7.2 to 248.7 MPa : Evaluation of density underestimation by laser heating

    Get PDF
    Unintended local temperature enhancement by excitation laser might change Raman spectral features and potentially lead to misinterpretation of the data. To evaluate robustness of Raman CO2 densimeters in the presence of laser heating, we investigate the relation between temperature (T, degrees C), density (rho, g/cm(3)), and Fermi diad split (Delta, cm(-1)) using a high-pressure optical cell at 23 degrees C to 200 degrees C and 7.2-248.7 MPa. Results indicate that Delta decreases concomitantly with increasing temperature for a constant density in all density regions investigated. This result suggests that the density estimated based on Delta might be underestimated if the fluid is heated locally by the laser. Combining results of earlier studies with those of the present study indicates that the temperature dependence of Delta (|( partial differential Delta/ partial differential T)(rho)|) has a maximum value around 0.6-0.7 g/cm(3). Consequently, at very high densities such as 1.1-1.2 g/cm(3), |( partial differential Delta/ partial differential T)(rho)| is small. Thus, Delta at such densities is less affected by laser heating. However, at densities below approximately 0.7 g/cm(3), although |( partial differential Delta/ partial differential T)(rho)| becomes smaller at lower densities, the relative density decrease becomes larger even for a small density decrease because the density itself becomes smaller. Therefore, at such densities, a density decrease of more than 10% was observed for some fluid inclusions, even at typical laser powers for inclusion analysis. Finally, to accurately estimate the density even in the presence of laser heating, we show that it is effective to estimate the intercept Delta from the correlation between Delta and laser power and substitute it into Delta-rho relations
    corecore