34 research outputs found

    Magnon-Phonon coupling in Fe3_3GeTe2_2

    Full text link
    We study the dynamic coupling of magnons and phonons in single crystals of Fe3GeTe2 (FGT) using inelastic scanning tunneling spectroscopy (ISTS) with an ultra-low temperature scanning tunneling microscope. Inelastic scattering of hot carriers off phonons or magnons has been widely studied using ISTS, and we use it to demonstrate strong magnon-phonon coupling in FGT. We show a strong interaction between magnons and acoustic phonons which leads to formation of van Hove singularities originating in avoided level crossings and hybridization between the magnonic and phononic bands in this material. We identify these additional hybridization points in experiments and compare their energy with density functional theory calculations. Our findings provide a platform for designing the properties of dynamic magnon-phonon coupling in two-dimensional materials.Comment: 6 pages, 3 figure

    Unraveling the exciton binding energy and the dielectric constant in single crystal methylammonium lead tri-iodide perovskite

    Full text link
    We have accurately determined the exciton binding energy and reduced mass of single crystals of methylammonium lead tri-iodide using magneto-reflectivity at very high magnetic fields. The single crystal has excellent optical properties with a narrow line width of ∼3\sim 3meV for the excitonic transitions and a 2s transition which is clearly visible even at zero magnetic field. The exciton binding energy of 16±216 \pm 2meV in the low temperature orthorhombic phase is almost identical to the value found in polycrystalline samples, crucially ruling out any possibility that the exciton binding energy depends on the grain size. In the room temperature tetragonal phase, an upper limit for the exciton binding energy of 12±412 \pm 4 meV is estimated from the evolution of 1s-2s splitting at high magnetic field.Comment: 5 pages, 4 figure

    The high-pressure phase diagram of BaNi2_2As2_2: unconventional charge-density-waves and structural phase transitions

    Full text link
    Structural phase transitions accompanied by incommensurate and commensurate charge density wave (CDW) modulations of unconventional nature have been reported in BaNi2_2As2_2, a nonmagnetic cousin of the parent compound of Fe-based superconductors, BaFe2_2As2_2. The strong dependence of the structural and CDW transitions of BaNi2_2As2_2 on isoelectronic substitutions alongside original dynamical lattice effects suggests strong tunability of the electronic phase of the system through structural effects. Here, we present a comprehensive synchrotron x-ray diffraction and first-principles calculation study of the evolution of the crystal structure and lattice instabilities of BaNi2_2As2_2 as a function of temperature and hydrostatic pressure (up to 12 GPa). We report a cascade of pressure-induced structural phase transitions and electronic instabilities up to 10 GPa, above which all CDW superstructures disappear. We reveal that the stable high-pressure phase consists of planar Ni zigzag chains, from which the surrounding As atoms have been pushed away. This yields a strong reduction of the interlayer As-As distance (along the original c axis), akin to what is observed in the collapsed tetragonal structure of other pnictides, albeit here with a monoclinic structure. The discovery of polymorphs in the pressure-temperature phase diagram of BaNi2_2As2_2 emphasizes the importance of the relative Ni-Ni and Ni-As bond lengths in controlling the electronic ground state of this compound and increases our understanding of viable electronic phases under extreme conditions.Comment: 10 pages, 5 figures, 1 table, published versio

    Physical properties of single-crystalline Ba 8 Ni 3.5 Ge 42.1 h 0.4

    Get PDF
    Clathrates are candidate materials for thermoelectric applications because of a number of unique properties. The clathrate I phases in the Ba-Ni-Ge ternary system allow controlled variation of the charge carrier concentration by adjusting the Ni content. Depending on the Ni content, the physical properties vary from metal-like to insulator-like and show a transition from p-type to n-type conduction. Here we present first results on the characterization of millimeter-sized single crystals grown by the Bridgman technique. Single crystals with a composition of Ba8Ni3.5Ge42.1h0.4 show metallic behavior (dp/dT > 0) albeit with high resistivity at room temperature [p (300 K) = 1 mOhm cm]. The charge carrier concentration at 300 K, as determined from Hall-effect measurements, is 2.3 e-/unit cell. The dimensionless thermoelectric figure of merit estimated at 680 K is ZT ~ 0.2. Keywords Clathrates - thermoelectric material - intermetallic compound - nicke

    Colossal c-axis response and lack of rotational symmetry breaking within the kagome plane of the CsV3_3Sb5_5 superconductor

    Full text link
    The kagome materials AV43_3Sb5_5 (A = K, Rb, Cs) host an intriguing interplay between unconventional superconductivity and charge-density-waves. Here, we investigate CsV3_3Sb5_5 by combining high-resolution thermal-expansion, heat-capacity and electrical resistance under strain measurements. We directly unveil that the superconducting and charge-ordered states strongly compete, and that this competition is dramatically influenced by tuning the crystallographic c-axis. In addition, we report the absence of additional bulk phase transitions within the charge-ordered state, notably associated with rotational symmetry-breaking within the kagome planes. This suggests that any breaking of the C6_6 invariance occurs via different stacking of C6_6-symmetric kagome patterns. Finally, we find that the charge-density-wave phase exhibits an enhanced A1g_{1g}-symmetric elastoresistance coefficient, whose large increase at low temperature is driven by electronic degrees of freedom

    Disentangling lattice and electronic instabilities in the excitonic insulator candidate Ta2_2NiSe5_5 by nonequilibrium spectroscopy

    Full text link
    Ta2_2NiSe5_5 is an excitonic insulator candidate showing the semiconductor/semimetal-to-insulator (SI) transition below TcT_{\text{c}} = 326 K. However, since a structural transition accompanies the SI transition, deciphering the role of electronic and lattice degrees of freedom in driving the SI transition has remained controversial. Here, we investigate the photoexcited nonequilibrium state in Ta2_2NiSe5_5 using pump-probe Raman and photoluminescence (PL) spectroscopies. The combined nonequilibrium spectroscopic measurements of the lattice and electronic states reveal the presence of a photoexcited metastable state where the insulating gap is suppressed, but the low-temperature structural distortion is preserved. We conclude that electron correlations play a vital role in the SI transition of Ta2_2NiSe5_5.Comment: 13 pages, 10 figure

    Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI₃ films

    Get PDF
    Vapour deposition of metal halide perovskite by co-evaporation of precursors has the potential to achieve large-area high-efficiency solar cells on an industrial scale, yet little is known about the growth of metal halide perovskites by this method at the current time. Here, we report the fabrication of MAPbI3 films with average thicknesses from 2–320 nm by co-evaporation. We analyze the film properties using X-ray diffraction, optical absorption and photoluminescence (PL) to provide insights into the nucleation and growth of MAPbI3 films on quartz substrates. We find that the perovskite initially forms crystallite islands of around 8 nm in height, which may be the cause of the persistent small grain sizes reported for evaporated metal halide perovskites that hinder device efficiency and stability. As more material is added, islands coalesce until full coverage of the substrate is reached at around 10 nm average thickness. We also find that quantum confinement induces substantial shifts to the PL wavelength when the average thickness is below 40 nm, offering dual-source vapour deposition as an alternative method of fabricating nanoscale structures for LEDs and other devices
    corecore