152 research outputs found
Recommended from our members
SpectralNET – an application for spectral graph analysis and visualization
BACKGROUND: Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. RESULTS: Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). CONCLUSION: SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request
Revealing Complex Traits with Small Molecules and Naturally Recombinant Yeast Strains
SummaryHere we demonstrate that natural variants of the yeast Saccharomyces cerevisiae are a model system for the systematic study of complex traits, specifically the response to small molecules. As a complement to artificial knockout collections of S. cerevisiae widely used to study individual gene function, we used 314- and 1932-member libraries of mutant strains generated by meiotic recombination to study the cumulative, quantitative effects of natural mutations on phenotypes induced by 23 small-molecule perturbagens (SMPs). This approach reveals synthetic lethality between SMPs, and genetic mapping studies confirm the involvement of multiple quantitative trait loci in the response to two SMPs that affect respiratory processes. The systematic combination of natural variants of yeast and small molecules that modulate evolutionarily conserved cellular processes can enable a better understanding of the general features of complex traits
Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability
Frontotemporal dementia (FTD) and other tauopathies characterized by focal brain neurodegeneration and pathological accumulation of proteins are commonly associated with tau mutations. However, the mechanism of neuronal loss is not fully understood. To identify molecular events associated with tauopathy, we studied induced pluripotent stem cell (iPSC)-derived neurons from individuals carrying the tau-A152T variant. We highlight the potential of in-depth phenotyping of human neuronal cell models for pre-clinical studies and identification of modulators of endogenous tau toxicity. Through a panel of biochemical and cellular assays, A152T neurons showed accumulation, redistribution, and decreased solubility of tau. Upregulation of tau was coupled to enhanced stress-inducible markers and cell vulnerability to proteotoxic, excitotoxic, and mitochondrial stressors, which was rescued upon CRISPR/Cas9-mediated targeting of tau or by pharmacological activation of autophagy. Our findings unmask tau-mediated perturbations of specific pathways associated with neuronal vulnerability, revealing potential early disease biomarkers and therapeutic targets for FTD and other tauopathies
A High-Throughput Screen for Wnt/β-Catenin Signaling Pathway Modulators in Human iPSC-Derived Neural Progenitors
Wnt/β-catenin signaling has emerged as a central player in pathways implicated in the pathophysiology and treatment of neuropsychiatric disorders. To identify potential novel therapeutics for these disorders, high-throughput screening (HTS) assays reporting on Wnt/β-catenin signaling in disease-relevant contexts are needed. The use of human patient–derived induced pluripotent stem cell (iPSC) models provides ideal disease-relevant context if these stem cell cultures can be adapted for HTS-compatible formats. Here, we describe a sensitive, HTS-compatible Wnt/β-catenin signaling reporter system generated in homogeneous, expandable neural progenitor cells (NPCs) derived from human iPSCs. We validated this system by demonstrating dose-responsive stimulation by several known Wnt/β-catenin signaling pathway modulators, including Wnt3a, a glycogen synthase kinase-3 (GSK3) inhibitor, and the bipolar disorder therapeutic lithium. These responses were robust and reproducible over time across many repeated assays. We then conducted a screen of ~1500 compounds from a library of Food and Drug Administration–approved drugs and known bioactives and confirmed the HTS hits, revealing multiple chemical and biological classes of novel small-molecule probes of Wnt/β-catenin signaling. Generating these type of pathway-selective, cell-based phenotypic assays in human iPSC-derived neural cells will advance the field of human experimental neurobiology toward the goal of identifying and validating targets for neuropsychiatric disorders.National Institute of Mental Health (U.S.) (Grant R01MH091115)Stanley Medical Research Institut
A microRNA cluster in the Fragile-X region expressed during spermatogenesis targets FMR1.
Testis-expressed X-linked genes typically evolve rapidly. Here, we report on a testis-expressed X-linked microRNA (miRNA) cluster that despite rapid alterations in sequence has retained its position in the Fragile-X region of the X chromosome in placental mammals. Surprisingly, the miRNAs encoded by this cluster (Fx-mir) have a predilection for targeting the immediately adjacent gene, Fmr1, an unexpected finding given that miRNAs usually act in trans, not in cis Robust repression of Fmr1 is conferred by combinations of Fx-mir miRNAs induced in Sertoli cells (SCs) during postnatal development when they terminate proliferation. Physiological significance is suggested by the finding that FMRP, the protein product of Fmr1, is downregulated when Fx-mir miRNAs are induced, and that FMRP loss causes SC hyperproliferation and spermatogenic defects. Fx-mir miRNAs not only regulate the expression of FMRP, but also regulate the expression of eIF4E and CYFIP1, which together with FMRP form a translational regulatory complex. Our results support a model in which Fx-mir family members act cooperatively to regulate the translation of batteries of mRNAs in a developmentally regulated manner in SCs
Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation
A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multidimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as ether-a-go-go–related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors
Recommended from our members
Class I HDAC Inhibition Blocks Cocaine-Induced Plasticity Through Targeted Changes in Histone Methylation
Induction of histone acetylation in the nucleus accumbens (NAc), a key brain reward region, promotes cocaine-induced alterations in gene expression. Histone deacetylases (HDACs) tightly regulate the acetylation of histone tails, but little is known about the functional specificity of different HDAC isoforms in the development and maintenance of cocaine-induced plasticity, and prior studies of HDAC inhibitors report conflicting effects on cocaine-elicited behavioral adaptations. Here, we demonstrate that specific and prolonged blockade of HDAC1 in NAc of mice increased global levels of histone acetylation, but also induced repressive histone methylation and antagonized cocaine-induced changes in behavior, an effect mediated in part via a chromatin-mediated suppression of GABAA receptor subunit expression and inhibitory tone on NAc neurons. Our findings suggest a novel mechanism by which prolonged and selective HDAC inhibition can alter behavioral and molecular adaptations to cocaine and inform the development of novel therapeutics for cocaine addiction
Recommended from our members
Cis-Acting Regulation of Brain-Specific ANK3 Gene Expression by a Genetic Variant Associated with Bipolar Disorder
Several genome-wide association studies (GWAS) for bipolar disorder (BD) have found a strong association of the Ankyrin3 (ANK3) gene. This association spans numerous linked single nucleotide polymorphisms (SNPs) in a ~250 kb genomic region overlapping ANK3. The associated region encompasses predicted regulatory elements as well as two of six validated alternative first exons, which encode distinct protein domains at the N-terminus of the protein also known as ankyrin-G (AnkG). Using RNA Ligase-Mediated Rapid Amplification of cDNA Ends (RLM-RACE) to identify novel transcripts in conjunction with a highly sensitive, exon-specific multiplexed mRNA expression assay, we detected differential regulation of distinct ANK3 transcription start sites (TSSs) and coupling of specific 5’ ends with 3’ mRNA splicing events in post-mortem human brain and human stem cell-derived neural progenitors and neurons. Furthermore, allelic variation at the BD–associated SNP rs1938526 correlated with a significant difference in cerebellar expression of a brain-specific ANK3 transcript. These findings suggest a brain-specific cis-regulatory transcriptional effect of ANK3 may be relevant to BD pathophysiology
An epigenetic blockade of cognitive functions in the neurodegenerating brain
Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer’s disease [superscript 1]. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge [superscript 2]. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer’s-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer’s disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade.Stanley Medical Research InstituteNational Institute of Neurological Disorders and Stroke (U.S.) (RO1NS078839)Swiss National Science FoundationBard Richmond (Fellowship)Simons FoundationTheodor und Ida Herzog-Egli Foundatio
HDAC6 Inhibitors Modulate Lys49 Acetylation and Membrane Localization of β-Catenin in Human iPSC-Derived Neuronal Cells
We examined the effects of isoform-specific histone deacetylase (HDAC) inhibitors on β-catenin posttranslational modifications in neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs). β-catenin is a multifunctional protein with important roles in the developing and adult central nervous system. Activation of the Wnt pathway results in stabilization and nuclear translocation of β-catenin, resulting in activation of multiple target genes. In addition, β-catenin forms a complex with cadherins at the plasma membrane as part of the adherens junctions. The N-terminus of β-catenin has phosphorylation, ubiquitination, and acetylation sites that regulate its stability and signaling. In the absence of a Wnt signal, Ser33, Ser37, and Thr41 are constitutively phosphorylated by glycogen synthase kinase 3β (GSK3β). β-Catenin phosphorylated at these sites is recognized by β-transducin repeat-containing protein (βTrCP), which results in ubiquitination and degradation by the ubiquitin-proteasome pathway. The N-terminal regulatory domain of β-catenin also includes Ser45, a phosphorylation site for Casein Kinase 1α (CK1α) and Lys49, which is acetylated by the acetyltransferase p300/CBP-associated factor (PCAF). The relevance of Lys49 acetylation and Ser45 phosphorylation to the function of β-catenin is an active area of investigation. We find that HDAC6 inhibitors increase Lys49 acetylation and Ser45 phosphorylation but do not affect Ser33, Ser37, and Thr41 phosphorylation. Lys49 acetylation results in decreased ubiquitination of β-catenin in the presence of proteasome inhibition. While increased Lys49 acetylation does not affect total levels of β-catenin, it results in increased membrane localization of β-catenin
- …