48 research outputs found
Capturing and communicating impact of citizen science for policy: A storytelling approach
In response to the need for approaches to understand how citizen science is currently influencing environmental policy and associated decision making, we devised the Citizen Science Impact StoryTelling Approach (CSISTA). We iteratively designed instruments to be used as tools primarily for citizen science practitioners seeking to understand or communicate policy impacts. We then trialled the CSISTA and associated instruments on four exemplary citizen science initiatives, using different forms of inquiry and collaboration with respective initiative leaders. In this paper, we present CSISTA, with details of the steps for implementing inquiry and storytelling instruments. Additionally, we reflect on insights gained and challenges encountered implementing the approach. Overall, we found the versatility and structure of CSISTA as a process with multiple guiding instruments useful. We envision the approach being helpful, particularly with regards to: 1) gaining an understanding of a citizen science initiative's policy and decision-making impacts; 2) creating short policy impact stories to communicate such impacts to broader audiences; or 3) fulfilling both goals to understand and communicate policy impacts with a unified approach. We encourage others to explore, adapt, and improve the approach. Additionally, we hope that explorations of CSISTA will foster broader discussions on how to understand and strengthen interactions between citizen science practitioners, policy makers, and decision makers at large, whether at local, national, or international scales
On realcompact topological vector spaces
[EN] This survey paper collects some of older and quite new concepts and results from descriptive set topology applied to study certain infinite-dimensional topological vector spaces appearing in Functional Analysis, including Frechet spaces, (L F)-spaces, and their duals, (D F)-spaces and spaces of continuous real-valued functions C(X) on a completely regular Hausdorff space X. Especially (L F)-spaces and their duals arise in many fields of Functional Analysis and its applications, for example in Distributions Theory, Differential Equations and Complex Analysis. The concept of a realcompact topological space, although originally introduced and studied in General Topology, has been also studied because of very concrete applications in Linear Functional Analysis.The research for the first named author was (partially) supported by Ministry of Science and Higher Education, Poland, Grant no. NN201 2740 33 and for the both authors by the project MTM2008-01502 of the Spanish Ministry of Science and Innovation.Kakol, JM.; LĂłpez Pellicer, M. (2011). On realcompact topological vector spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 105(1):39-70. https://doi.org/10.1007/s13398-011-0003-0S39701051Argyros S., Mercourakis S.: On weakly Lindelöf Banach spaces. Rocky Mountain J. Math. 23(2), 395â446 (1993). doi: 10.1216/rmjm/1181072569Arkhangelâskii, A. V.: Topological Function Spaces, Mathematics and its Applications, vol. 78, Kluwer, Dordrecht (1992)Batt J., Hiermeyer W.: On compactness in L p (ÎŒ, X) in the weak topology and in the topology Ï(L p (ÎŒ, X), L p (ÎŒ,XâČ)). Math. Z. 182, 409â423 (1983)Baumgartner J.E., van Douwen E.K.: Strong realcompactness and weakly measurable cardinals. Topol. Appl. 35, 239â251 (1990). doi: 10.1016/0166-8641(90)90109-FBierstedt K.D., Bonet J.: Stefan Heinrichâs density condition for FrĂ©chet spaces and the characterization of the distinguished Köthe echelon spaces. Math. Nachr. 35, 149â180 (1988)Cascales B.: On K-analytic locally convex spaces. Arch. Math. 49, 232â244 (1987)Cascales B., Ka̧kol J., Saxon S.A.: Weight of precompact subsets and tightness. J. Math. Anal. Appl. 269, 500â518 (2002). doi: 10.1016/S0022-247X(02)00032-XCascales B., Ka̧kol J., Saxon S.A.: Metrizability vs. FrĂ©chetâUrysohn property. Proc. Am. Math. Soc. 131, 3623â3631 (2003)Cascales B., Namioka I., Orihuela J.: The Lindelöf property in Banach spaces. Stud. Math. 154, 165â192 (2003). doi: 10.4064/sm154-2-4Cascales B., Oncina L.: Compactoid filters and USCO maps. J. Math. Anal. Appl. 282, 826â843 (2003). doi: 10.1016/S0022-247X(03)00280-4Cascales B., Orihuela J.: On compactness in locally convex spaces, Math. Z. 195(3), 365â381 (1987). doi: 10.1007/BF01161762Cascales B., Orihuela J.: On pointwise and weak compactness in spaces of continuous functions. Bull. Soc. Math. Belg. Ser. B 40(2), 331â352 (1988) Journal continued as Bull. Belg. Math. Soc. Simon StevinDiestel J.: is weakly compactly generated if X is. Proc. Am. Math. Soc. 48(2), 508â510 (1975). doi: 10.2307/2040292van Douwen E.K.: Prime mappings, number of factors and binary operations. Dissertationes Math. (Rozprawy Mat.) 199, 35 (1981)Drewnowski L.: Resolutions of topological linear spaces and continuity of linear maps. J. Math. Anal. Appl. 335(2), 1177â1195 (2007). doi: 10.1016/j.jmaa.2007.02.032Engelking R.: General Topology. Heldermann Verlag, Lemgo (1989)Fabian, M., Habala, P., HĂĄjek, P., Montesinos, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. Canadian Mathematical Society. Springer, Berlin (2001)Ferrando J.C.: A weakly analytic space which is not K-analytic. Bull. Aust. Math. Soc. 79(1), 31â35 (2009). doi: 10.1017/S0004972708000968Ferrando J.C.: Some characterization for Ï
X to be Lindelöf ÎŁ or K-analytic in term of C p (X). Topol. Appl. 156(4), 823â830 (2009). doi: 10.1016/j.topol.2008.10.016Ferrando J.C., Ka̧kol J.: A note on spaces C p (X) K-analytic-framed in . Bull. Aust. Math. Soc. 78, 141â146 (2008)Ferrando J.C., Ka̧kol J., LĂłpez-Pellicer M.: Bounded tightness conditions and spaces C(X). J. Math. Anal. Appl. 297, 518â526 (2004)Ferrando J.C., Ka̧kol J., LĂłpez-Pellicer M.: A characterization of trans-separable spaces. Bull. Belg. Math. Soc. Simon Stevin 14, 493â498 (2007)Ferrando, J.C., Ka̧kol, J., LĂłpez-Pellicer, M.: Metrizability of precompact sets: an elementary proof. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. RACSAM 99(2), 135â142 (2005). http://www.rac.es/ficheros/doc/00173.pdfFerrando J.C., Ka̧kol J., LĂłpez-Pellicer M., Saxon S.A.: Tightness and distinguished FrĂ©chet spaces. J. Math. Anal. Appl. 324, 862â881 (2006). doi: 10.1016/j.jmaa.2005.12.059Ferrando J.C., Ka̧kol J., LĂłpez-Pellicer M., Saxon S.A.: Quasi-Suslin weak duals. J. Math. Anal. Appl. 339(2), 1253â1263 (2008). doi: 10.1016/j.jmaa.2007.07.081Floret, K.: Weakly compact sets. Lecture Notes in Mathematics, vol. 801, Springer, Berlin (1980)Gillman L., Henriksen M.: Rings of continuous functions in which every finitely generated ideal is principial. Trans. Am. Math. Soc. 82, 366â391 (1956). doi: 10.2307/1993054Gillman L., Jerison M.: Rings of Continuous Functions. Van Nostrand Reinhold Company, New York (1960)Grothendieck A.: Sur les applications linĂ©aires faiblement compactes dâespaces du type C(K). Can. J. Math. 5, 129â173 (1953)Gullick D., Schmets J.: Separability and semi-norm separability for spaces of bounded continuous functions. Bull. R. Sci. Lige 41, 254â260 (1972)Hager A.W.: Some nearly fine uniform spaces. Proc. Lond. Math. Soc. 28, 517â546 (1974). doi: 10.1112/plms/s3-28.3.517Howes N.R.: On completeness. Pacific J. Math. 38, 431â440 (1971)Isbell, J.R.: Uniform spaces. In: Mathematical Surveys 12, American Mathematical Society, Providence (1964)Ka̧kol J., LĂłpez-Pellicer M.: Compact coverings for Baire locally convex spaces. J. Math. Anal. Appl. 332, 965â974 (2007). doi: 10.1016/j.jmaa.2006.10.045Ka̧kol, J., LĂłpez-Pellicer, M.: A characterization of Lindelöf ÎŁ-spaces Ï
X (preprint)Ka̧kol J., LĂłpez-Pellicer M., Ćliwa W.: Weakly K-analytic spaces and the three-space property for analyticity. J. Math. Anal. Appl. 362(1), 90â99 (2010). doi: 10.1016/j.jmaa.2009.09.026Ka̧kol J., Saxon S.: Montel (DF)-spaces, sequential (LM)-spaces and the strongest locally convex topology. J. Lond. Math. Soc. 66(2), 388â406 (2002)Ka̧kol J., Saxon S., Todd A.T.: Pseudocompact spaces X and df-spaces C c (X). Proc. Am. Math. Soc. 132, 1703â1712 (2004)Ka̧kol J., Ćliwa W.: Strongly Hewitt spaces. Topology Appl. 119(2), 219â227 (2002). doi: 10.1016/S0166-8641(01)00063-3Khan L.A.: Trans-separability in spaces of continuous vector-valued functions. Demonstr. Math. 37, 61â67 (2004)Khan L.A.: Trans-separability in the strict and compact-open topologies. Bull. Korean Math. Soc. 45, 681â687 (2008). doi: 10.4134/BKMS.2008.45.4.681Khurana S.S.: Weakly compactly generated FrĂ©chet spaces. Int. J. Math. Math. Sci. 2(4), 721â724 (1979). doi: 10.1155/S0161171279000557Kirk R.B.: A note on the Mackey topology for (C b (X)*,C b (X)). Pacific J. Math. 45(2), 543â554 (1973)Köthe G.: Topological Vector Spaces I. Springer, Berlin (1969)KubiĆ W., Okunev O., Szeptycki P.J.: On some classes of Lindelöf ÎŁ-spaces. Topol. Appl. 153(14), 2574â2590 (2006). doi: 10.1016/j.topol.2005.09.009KĂŒnzi H.P.A., MrĆĄeviÄ M., Reilly I.L., Vamanamurthy M.K.: Pre-Lindelöf quasi-pseudo-metric and quasi-uniform spaces. Mat. Vesnik 46, 81â87 (1994)Megginson R.: An Introduction to Banach Space Theory. Springer, Berlin (1988)Michael E.: â”0-spaces. J. Math. Mech. 15, 983â1002 (1966)Nagami K.: ÎŁ-spaces. Fund. Math. 61, 169â192 (1969)Narayanaswami P.P., Saxon S.A.: (LF)-spaces, quasi-Baire spaces and the strongest locally convex topology. Math. Ann. 274, 627â641 (1986). doi: 10.1007/BF01458598Negrepontis S.: Absolute Baire sets. Proc. Am. Math. Soc. 18(4), 691â694 (1967). doi: 10.2307/2035440Orihuela J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36(2), 143â152 (1987). doi: 10.1112/jlms/s2-36.1.143Orihuela, J.: On weakly Lindelöf Banach spaces. In: Bierstedt, K.D. et al. (eds.) Progress in Functional Analysis, pp. 279â291. Elsvier, Amsterdam (1992). doi: 10.1016/S0304-0208(08)70326-8Orihuela J., Schachermayer W., Valdivia M.: Every ReadomâNikodym Corson compact space is Eberlein compact. Stud. Math. 98, 157â174 (1992)Orihuela, J., Valdivia, M.: Projective generators and resolutions of identity in Banach spaces. Rev. Mat. Complut. 2(Supplementary Issue), 179â199 (1989)PĂ©rez Carreras P., Bonet J.: Barrelled Locally Convex Spaces, Mathematics Studies 131. North-Holland, Amsterdam (1987)Pfister H.H.: Bemerkungen zum Satz ĂŒber die separabilitĂ€t der FrĂ©chet-Montel RaĂŒme. Arch. Math. (Basel) 27, 86â92 (1976). doi: 10.1007/BF01224645Robertson N.: The metrisability of precompact sets. Bull. Aust. Math. Soc. 43(1), 131â135 (1991). doi: 10.1017/S0004972700028847Rogers C.A., Jayne J.E., Dellacherie C., TopsĂže F., Hoffman-JĂžrgensen J., Martin D.A., Kechris A.S., Stone A.H.: Analytic Sets. Academic Press, London (1980)Saxon S.A.: Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology. Math. Ann. 197(2), 87â106 (1972). doi: 10.1007/BF01419586Schawartz L.: Radom Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford University Press, Oxford (1973)SchlĂŒchtermann G., Wheller R.F.: On strongly WCG Banach spaces. Math. Z. 199(3), 387â398 (1988). doi: 10.1007/BF01159786SchlĂŒchtermann G., Wheller R.F.: The Mackey dual of a Banach space. Note Math. 11, 273â287 (1991)Schmets, J.: Espaces de functions continues. Lecture Notes in Mathematics, vol 519, Springer-Verlag, Berlin-New York (1976)Talagrand M.: Sur une conjecture de H. H. Corson. Bull. Soc. Math. 99, 211â212 (1975)Talagrand M.: Espaces de Banach faiblement K-analytiques. Ann. Math. 110, 407â438 (1979)Talagrand M.: Weak Cauchy sequences in L 1(E). Am. J. Math. 106(3), 703â724 (1984). doi: 10.2307/2374292Tkachuk V.V.: A space C p (X) is dominated by irrationals if and only if it is K-analytic. Acta Math. Hungar. 107(4), 253â265 (2005)Tkachuk V.V.: Lindelöf ÎŁ-spaces: an omnipresent class. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. 104(2), 221â244 (2010). doi: 10.5052/RACSAM.2010.15Todd A.R., Render H.: Continuous function spaces, (db)-spaces and strongly Hewitt spaces. Topol. Appl. 141, 171â186 (2004). doi: 10.1016/j.topol.2003.12.005Valdivia M.: Topics in Locally Convex Spaces, Mathematics Studies 67. North-Holland, Amsterdam (1982)Valdivia M.: Espacios de FrĂ©chet de generaciĂłn dĂ©bilmente compacta. Collect. Math. 38, 17â25 (1987)Valdivia M.: Resolutions of identity in certain Banach spaces. Collect. Math. 38, 124â140 (1988)Valdivia M.: Resolutions of identity in certain metrizable locally convex spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 83, 75â96 (1989)Valdivia M.: Projective resolutions of identity in C(K) spaces. Arch. Math. (Basel) 54, 493â498 (1990)Valdivia, M.: Resoluciones proyectivas del operador identidad y bases de Markusevich en ciertos espacios de Banach. Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 84, 23â34Valdivia M.: Quasi-LB-spaces. J. Lond. Math. Soc. 35(2), 149â168 (1987). doi: 10.1112/jlms/s2-35.1.149Walker, R.C.: The Stone-Äech compactification Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 83. Springer, Berlin (1974
Ruthenium-arene complexes bearing naphthyl-substituted 1,3-dioxoindan-2-carboxamides ligands for G-quadruplex DNA recognition
Quadruplex nucleic acids-DNA/RNA secondary structures formed in guanine rich sequences-proved to have key roles in the biology of cancers and, as such, in recent years they emerged as promising targets for small molecules. Many reports demonstrated that metal complexes can effectively stabilize quadruplex structures, promoting telomerase inhibition, downregulation of the expression of cancer-related genes and ultimately cancer cell death. Although extensively explored as anticancer agents, studies on the ability of ruthenium arene complexes to interact with quadruplex nucleic acids are surprisingly almost unknown. Herein, we report on the synthesis and characterization of four novel Ru(ii) arene complexes with 1,3-dioxoindan-2-carboxamides ligands bearing pendant naphthyl-groups designed to bind quadruplexes by both stacking and coordinating interactions. We show how improvements on the hydrolytic stability of such complexes, by substituting the chlorido leaving ligand with pyridine, have a dramatic impact on their interaction with quadruplexes and on their cytotoxicity against ovarian cancer cells