28 research outputs found

    The Evolution of the Far-UV Luminosity Function and Star Formation Rate Density of the Chandra Deep Field South from z=0.2-1.2 with Swift/UVOT

    Get PDF
    We use deep Swift UV/Optical Telescope (UVOT) near-ultraviolet (1600A to 4000A) imaging of the Chandra Deep Field South to measure the rest-frame far-UV (FUV; 1500A) luminosity function (LF) in four redshift bins between z=0.2 and 1.2. Our sample includes 730 galaxies with u < 24.1 mag. We use two methods to construct and fit the LFs: the traditional V_max method with bootstrap errors and a maximum likelihood estimator. We observe luminosity evolution such that M* fades by ~2 magnitudes from z~1 to z~0.3 implying that star formation activity was substantially higher at z~1 than today. We integrate our LFs to determine the FUV luminosity densities and star formation rate densities from z=0.2 to 1.2. We find evolution consistent with an increase proportional to (1+z)^1.9 out to z~1. Our luminosity densities and star formation rates are consistent with those found in the literature, but are, on average, a factor of ~2 higher than previous FUV measurements. In addition, we combine our UVOT data with the MUSYC survey to model the galaxies' ultraviolet-to-infrared spectral energy distributions and estimate the rest-frame FUV attenuation. We find that accounting for the attenuation increases the star formation rate densities by ~1 dex across all four redshift bins.Comment: 20 pages, 8 figures, 6 tables; accepted for publication in Ap

    On the Classification of UGC1382 as a Giant Low Surface Brightness Galaxy

    Get PDF
    We provide evidence that UGC1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy which rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ~38 kpc and an extrapolated central surface brightness of ~26 mag/arcsec^2. Both components have a combined stellar mass of ~8x10^10 M_sun, and are embedded in a massive (10^10 M_sun) low-density (<3 M_sun/pc^2) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2x10^12 M_sun. Although possibly part of a small group, its low density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC1382 has UV-optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion time scale of ~10^11 yr suggests that UGC1382 may be a very long term resident of the green valley. We find that the formation and evolution of the LSB disk is best explained by the accretion of gas-rich LSB dwarf galaxies.Comment: 17 pages, 16 figures, 4 tables; accepted to the Astrophysical Journa

    UVOT Measurements of Dust and Star Formation in the SMC and M33

    Full text link
    When measuring star formation rates using ultraviolet light, correcting for dust extinction is a critical step. However, with the variety of dust extinction curves to choose from, the extinction correction is quite uncertain. Here, we use Swift/UVOT to measure the extinction curve for star-forming regions in the SMC and M33. We find that both the slope of the curve and the strength of the 2175 Angstrom bump vary across both galaxies. In addition, as part of our modeling, we derive a detailed recent star formation history for each galaxy.Comment: 6 pages, 5 figures, conference proceedings from Swift: 10 years of Discovery, held in Rome (2-5 Dec. 2014

    Measuring Dust Attenuation Curves of SINGS/KINGFISH Galaxies Using Swift/UVOT Photometry

    Full text link
    We present Swift/Ultraviolet Optical Telescope (UVOT) integrated light photometry of the Spitzer Infrared Nearby Galaxies Survey (SINGS) and the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) samples of nearby galaxies. Combining the Swift/UVOT data with archival photometry, we investigate a variety of dust attenuation curves derived using MCSED, a flexible spectral energy distribution fitting code. We fit the panchromatic data using three different star formation history (SFH) parameterizations: a decaying exponential, a double power law, and a piecewise function with breaks at physically motivated ages. We find that the average attenuation law of the sample changes slightly based on the SFH assumed. Specifically, the exponential SFH leads to the shallowest attenuation curves. Using simulated data, we also find the exponential SFH fails to outperform the more complex SFHs. Finally, we find a systematic offset in the derived bump strength between SED fits with and without UVOT data, where the inclusion of UVOT data leads to smaller bump strengths, highlighting the importance of the UVOT data. This discrepancy is not seen in fits to mock photometry. Understanding dust attenuation in the local universe is key to understanding high redshift objects where rest-frame far-infrared data is unavailable.Comment: 30 pages, 13 figures, accepted for publication in Ap

    The Quest for the Missing Dust: II -- Two Orders of Magnitude of Evolution in the Dust-to-Gas Ratio Resolved Within Local Group Galaxies

    Get PDF
    We explore evolution in the dust-to-gas ratio with density within four well-resolved Local Group galaxies - the LMC, SMC, M31, and M33. We do this using new Herschel{\it Herschel} maps, which restore extended emission that was missed by previous Herschel{\it Herschel} reductions. This improved data allows us to probe the dust-to-gas ratio across 2.5 orders of magnitude in ISM surface density. We find significant evolution in the dust-to-gas ratio, with dust-to-gas varying with density within each galaxy by up to a factor 22.4. We explore several possible reasons for this, and our favored explanation is dust grain growth in denser regions of ISM. We find that the evolution of the dust-to-gas ratio with ISM surface density is very similar between M31 and M33, despite their large differences in mass, metallicity, and star formation rate; conversely, we find M33 and the LMC to have very different dust-to-gas evolution profiles, despite their close similarity in those properties. Our dust-to-gas ratios address previous disagreement between UV- and FIR-based dust-to-gas estimates for the Magellanic Clouds, removing the disagreement for the LMC, and considerably reducing it for the SMC - with our new dust-to-gas measurements being factors of 2.4 and 2.0 greater than the previous far-infrared estimates, respectively. We also observe that the dust-to-gas ratio appears to fall at the highest densities for the LMC, M31, and M33; this is unlikely to be an actual physical phenomenon, and we posit that it may be due to a combined effect of dark gas, and changing dust mass opacity.Comment: Accepted for publication in the Astrophysical Journa

    Towards Space-like Photometric Precision from the Ground with Beam-Shaping Diffusers

    Get PDF
    We demonstrate a path to hitherto unachievable differential photometric precisions from the ground, both in the optical and near-infrared (NIR), using custom-fabricated beam-shaping diffusers produced using specialized nanofabrication techniques. Such diffusers mold the focal plane image of a star into a broad and stable top-hat shape, minimizing photometric errors due to non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and telescope-induced variable aberrations seen in defocusing. This PSF reshaping significantly increases the achievable dynamic range of our observations, increasing our observing efficiency and thus better averages over scintillation. Diffusers work in both collimated and converging beams. We present diffuser-assisted optical observations demonstrating 62−16+2662^{+26}_{-16}ppm precision in 30 minute bins on a nearby bright star 16-Cygni A (V=5.95) using the ARC 3.5m telescope---within a factor of ∼\sim2 of Kepler's photometric precision on the same star. We also show a transit of WASP-85-Ab (V=11.2) and TRES-3b (V=12.4), where the residuals bin down to 180−41+66180^{+66}_{-41}ppm in 30 minute bins for WASP-85-Ab---a factor of ∼\sim4 of the precision achieved by the K2 mission on this target---and to 101ppm for TRES-3b. In the NIR, where diffusers may provide even more significant improvements over the current state of the art, our preliminary tests have demonstrated 137−36+64137^{+64}_{-36}ppm precision for a KS=10.8K_S =10.8 star on the 200" Hale Telescope. These photometric precisions match or surpass the expected photometric precisions of TESS for the same magnitude range. This technology is inexpensive, scalable, easily adaptable, and can have an important and immediate impact on the observations of transits and secondary eclipses of exoplanets.Comment: Accepted for publication in ApJ. 30 pages, 20 figure

    Toward Space-like Photometric Precision from the Ground with Beam-shaping Diffusers

    Get PDF
    We demonstrate a path to hitherto unachievable differential photometric precisions from the ground, both in the optical and near-infrared (NIR), using custom-fabricated beam-shaping diffusers produced using specialized nanofabrication techniques. Such diffusers mold the focal plane image of a star into a broad and stable top-hat shape, minimizing photometric errors due to non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and telescope-induced variable aberrations seen in defocusing. This PSF reshaping significantly increases the achievable dynamic range of our observations, increasing our observing efficiency and thus better averages over scintillation. Diffusers work in both collimated and converging beams. We present diffuser-assisted optical observations demonstrating 62_(-16)^(+26) ppm precision in 30 minute bins on a nearby bright star 16 Cygni A (V = 5.95) using the ARC 3.5 m telescope—within a factor of ~2 of Kepler's photometric precision on the same star. We also show a transit of WASP-85-Ab (V = 11.2) and TRES-3b (V = 12.4), where the residuals bin down to 180_(-41)^(+66) ppm in 30 minute bins for WASP-85-Ab—a factor of ~4 of the precision achieved by the K2 mission on this target—and to 101 ppm for TRES-3b. In the NIR, where diffusers may provide even more significant improvements over the current state of the art, our preliminary tests demonstrated 137_(-36)^(+64) ppm precision for a K_S = 10.8 star on the 200 inch Hale Telescope. These photometric precisions match or surpass the expected photometric precisions of TESS for the same magnitude range. This technology is inexpensive, scalable, easily adaptable, and can have an important and immediate impact on the observations of transits and secondary eclipses of exoplanets
    corecore