4 research outputs found

    Consumption of a light meal affects serum concentrations of one-carbon metabolites and B-vitamins. A clinical intervention study

    Get PDF
    The transfer of one-carbon units between molecules in metabolic pathways is essential for maintaining cellular homeostasis, but little is known about whether the circulating concentrations of metabolites involved in the one-carbon metabolism are affected by the prandial status. Epidemiological studies do not always consistently use fasting or non-fasting blood samples or may lack information on the prandial status of the study participants. Therefore, the main aim of the present study was to investigate the effects of a light breakfast on serum concentrations of selected metabolites and B-vitamins related to the one-carbon metabolism; i.e. the methionine-homocysteine cycle, the folate cycle, the choline oxidation pathway and the transsulfuration pathway. Sixty-three healthy adults (thirty-six women) with BMI ≥ 27 kg/m2 were included in the study. Blood was collected in the fasting state and 60 and 120 min after intake of a standardised breakfast consisting of white bread, margarine, white cheese, strawberry jam and orange juice (2218 kJ). The meal contained low amounts of choline, betaine, serine and vitamins B2, B3, B6, B9 and B12. Serum concentrations of total homocysteine, total cysteine, flavin mononucleotide, nicotinamide and pyridoxal 5’-phosphate were significantly decreased, and concentrations of choline, betaine, dimethylglycine, sarcosine, cystathionine and folate were significantly increased following breakfast intake (P < 0·05). Our findings demonstrate that the intake of a light breakfast with low nutrient content affected serum concentrations of several metabolites and B-vitamins related to the one-carbon metabolism.publishedVersio

    Five salmon dinners per week were not sufficient to prevent the reduction in serum vitamin D in autumn at 60° north latitude: A randomised trial

    Get PDF
    Low serum concentrations of several vitamins have been linked to increased risk of diseases including insulin resistance and type 2 diabetes (T2D). Fish is a good source of several vitamins, and the prevalence of T2D is low in populations with high fish intake. The aim of the present study was to investigate the effects of high fish intake on vitamins in serum from adults in autumn in South-Western Norway at 60° north latitude. In this randomised clinical trial, sixty-three healthy participants with overweight/obesity consumed 750 g/week of either cod (n 22) or salmon (n 22) as five weekly dinners or were instructed to continue their normal eating habits but avoid fish intake (Control group, n 19) for 8 weeks. The estimated vitamin D intake was significantly increased in the Salmon group when compared with the Cod group (P = 6·3 × 10−4) and with the Control group (P = 3·5 × 10−6), with no differences between groups for estimated intake of vitamins A, B1, B2, B3, B6, B9, C and E. Serum 25-hydroxyvitamin D3 concentration was decreased in all groups after 8 weeks; however, the reduction in the Salmon group was significantly smaller compared with the Cod group (P = 0·013) and the Control group (P = 0·0060). Cod and salmon intake did not affect serum concentrations of the other measured vitamins. The findings suggest that 750 g/week of salmon was not sufficient to prevent a decrease in serum 25-hydroxyvitamin D3 in autumn in South-Western Norway in adults with overweight/obesity.publishedVersio

    Effects of high intake of cod or salmon on gut microbiota profile, faecal output and serum concentrations of lipids and bile acids in overweight adults: a randomised clinical trial

    Get PDF
    Purpose To explore whether high intake of cod or salmon would affect gut microbiota profile, faecal output and serum concentrations of lipids and bile acids. Methods Seventy-six adults with overweight/obesity with no reported gastrointestinal disease were randomly assigned to consume 750 g/week of either cod or salmon, or to avoid fish intake (Control group) for 8 weeks. Fifteen participants from each group were randomly selected for 72 h faeces collection at baseline and end point for gut microbiota profile analyses using 54 bacterial DNA probes. Food intake was registered, and fasting serum and morning urine were collected at baseline and end point. Results Sixty-five participants were included in serum and urine analyses, and gut microbiota profile was analysed for 33 participants. Principal component analysis of gut microbiota showed an almost complete separation of the Salmon group from the Control group, with lower counts for bacteria in the Bacteroidetes phylum and the Clostridiales order of the Firmicutes phyla, and higher counts for bacteria in the Selenomonadales order of the Firmicutes phylum. The Cod group showed greater similarity to the Salmon group than to the Control group. Intake of fibres, proteins, fats and carbohydrates, faecal daily mass and output of fat, cholesterol and total bile acids, and serum concentrations of cholesterol, triacylglycerols, non-esterified fatty acids and total bile acids were not altered in the experimental groups. Conclusion A high intake of cod or salmon fillet modulated gut microbiota but did not affect faecal output or serum concentrations of lipids and total bile acids. Clinical trial registration This trial was registered at clinicaltrials.gov as NCT02350595.publishedVersio

    Five salmon dinners per week were not sufficient to prevent the reduction in serum vitamin D in autumn at 60° north latitude: A randomised trial

    No full text
    Low serum concentrations of several vitamins have been linked to increased risk of diseases including insulin resistance and type 2 diabetes (T2D). Fish is a good source of several vitamins, and the prevalence of T2D is low in populations with high fish intake. The aim of the present study was to investigate the effects of high fish intake on vitamins in serum from adults in autumn in South-Western Norway at 60° north latitude. In this randomised clinical trial, sixty-three healthy participants with overweight/obesity consumed 750 g/week of either cod (n 22) or salmon (n 22) as five weekly dinners or were instructed to continue their normal eating habits but avoid fish intake (Control group, n 19) for 8 weeks. The estimated vitamin D intake was significantly increased in the Salmon group when compared with the Cod group (P = 6·3 × 10−4) and with the Control group (P = 3·5 × 10−6), with no differences between groups for estimated intake of vitamins A, B1, B2, B3, B6, B9, C and E. Serum 25-hydroxyvitamin D3 concentration was decreased in all groups after 8 weeks; however, the reduction in the Salmon group was significantly smaller compared with the Cod group (P = 0·013) and the Control group (P = 0·0060). Cod and salmon intake did not affect serum concentrations of the other measured vitamins. The findings suggest that 750 g/week of salmon was not sufficient to prevent a decrease in serum 25-hydroxyvitamin D3 in autumn in South-Western Norway in adults with overweight/obesity
    corecore