24 research outputs found

    Functional brush poly(2-ethyl-2-oxazine)s : synthesis by CROP and RAFT, thermoresponsiveness and grafting onto iron oxide nanoparticles

    Get PDF
    Brush polymers are highly functional polymeric materials combining the properties of different polymer classes and have found numerous applications, for example, in nanomedicine. Here, the synthesis of functional phosphonate‐ester‐bearing brush polymers based on poly(2‐oxazine)s is reported through a combination of cationic ring‐opening polymerization (CROP) of 2‐ethyl‐2‐oxazine and reversible addition‐fragmentation chain transfer (RAFT) polymerization. In this way, a small library of well‐defined (Đ ≀ 1.17) poly(oligo(2‐ethyl‐2‐oxazine) methacrylate) P(OEtOzMA)n brushes with tunable lower critical solution temperature (LCST) behavior and negligible cell toxicity is prepared. Upon deprotection, the phosphonic acid end‐group of the P(OEtOzMA)n brush enables the successful grafting‐onto iron oxide nanoparticles (IONPs). Colloidal stability of the particle suspension in combination with suitable magnetic resonance imaging (MRI) relaxivities demonstrates the potential of these particles for future applications as negative MRI contrast agents

    Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor

    Get PDF
    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in non-hematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP)). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects

    Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment

    Get PDF
    Sickness behavior and cognitive dysfunction occur frequently by unknown mechanisms in virus-infected individuals with malignancies treated with type I interferons (IFNs) and in patients with autoimmune disorders. We found that during sickness behavior, single-stranded RNA viruses, double-stranded RNA ligands, and IFNs shared pathways involving engagement of melanoma differentiation-associated protein 5 (MDA5), retinoic acid-inducible gene 1 (RIG-I), and mitochondrial antiviral signaling protein (MAVS), and subsequently induced IFN responses specifically in brain endothelia and epithelia of mice. Behavioral alterations were specifically dependent on brain endothelial and epithelial IFN receptor chain 1 (IFNAR). Using gene profiling, we identified that the endothelia-derived chemokine ligand CXCL10 mediated behavioral changes through impairment of synaptic plasticity. These results identified brain endothelial and epithelial cells as natural gatekeepers for virus-induced sickness behavior, demonstrated tissue specific IFNAR engagement, and established the CXCL10-CXCR3 axis as target for the treatment of behavioral changes during virus infection and type I IFN therapy

    Recent advances in molecular imaging of atherosclerotic plaques and thrombosis

    No full text
    As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation

    Functionalization of NaGdF4 nanoparticles with a dibromomaleimide-terminated polymer for MR/optical imaging of thrombosis

    No full text
    Herein, we report the development of a thrombosis-targeted molecular imaging probe with magnetic resonance (MR) and optical dual-modality capacity using dibromomaleimide (DBM)-bearing polymer-grafted NaGdF nanoparticles. The random copolymer of bisphosphonic ester (BPE)-P(OEGA-co-DBM) was first synthesized through reversible addition-fragmentation chain transfer (RAFT) copolymerization of oligo(ethylene glycol)methyl ether acrylate (OEGA) and DBM-based monomers using a BPE-terminated RAFT agent. The resulting polymers were subjected to deprotection with the formation of bisphosphonic acid (BPA) terminals, allowing for the attachment of the as-synthesized BPA-P(OEGA-co-DBM) chains onto the surface of paramagnetic NaGdF nanoparticles through the ligand exchange reaction. Azide moieties could be readily incorporated into the hybrid nanoparticles by the coupling reaction between the highly reactive DBM moieties and amine derivatives. Intriguingly, the coupling reaction was characterized by a unique fluorescence turn-on even in aqueous media, which subsequently enabled the fluorescence imaging applications of the resulting hybrid nanoparticle. Furthermore, a single-chain antibody (scFv), which is specifically used for the active conformation of the GPIIb/IIIa integrin, was successfully attached onto the nanoparticles by a strain-promoted copper-free "click" reaction, allowing the targeting of activated platelets in acute thrombosis. The hybrid nanoparticles prepared through this new surface functionalization protocol possessed not only high colloidal stability under physiological conditions but also potential MR/optical imaging capacity. The thrombosis targeting capacity of the hybrid nanoparticle-based probe was then demonstrated by exploiting DBM conjugation-induced fluorescence in living cells

    Limbic corticotropin-releasing hormone receptor I mediates anxiety-related behavior and hormonal adaptation to stress

    No full text
    Corticotropin-releasing hormone (CRH) is centrally involved in coordinating responses to a variety of stress-associated stimuli. Recent clinical data implicate CRH in the pathophysiology of human affective disorders. To differentiate the CNS pathways involving CRH and CRH receptor 1 (Crhr1) that modulate behavior from those that regulate neuroendocrine function, we generated a conditional knockout mouse line (Crhr1(loxP/loxP)Camk2a-cre) in which Crhr1 function is inactivated postnatally in anterior forebrain and limbic brain structures, but not in the pituitary. This leaves the hypothalamic-pituitary-adrenocortical (HPA) system intact. Crhr1(loxP/loxP)Camk2a-cre mutants showed reduced anxiety, and the basal activity of their HPA system was normal. In contrast to Crhr1 null mutants, conditional mutants were hypersensitive to stress corticotropin and corticosterone levels remained significantly elevated after stress. Our data clearly show that limbic Crhr1 modulates anxiety-related behavior and that this effect is independent of HPA system function. Furthermore, we provide evidence for a new role of limbic Crhr1 in neuroendocrine adaptation to stress

    Continent-wide analysis of how urbanization affects bird-window collision mortality in North America

    No full text
    Characteristics of buildings and land cover surrounding buildings influence the number of bird-window collisions, yet little is known about whether bird-window collisions are associated with urbanization at large spatial scales. We initiated a continent-wide study in North America to assess how bird-window collision mortality is influenced by building characteristics, landscaping around buildings, and regional urbanization. In autumn 2014, researchers at 40 sites (N = 281 buildings) used standardized protocols to document collision mortality of birds, evaluate building characteristics, and measure local land cover and regional urbanization. Overall, 324 bird carcasses were observed (range = 0–34 per site) representing 71 species. Consistent with previous studies, we found that building size had a strong positive effect on bird-window collision mortality, but the strength of the effect on mortality depended on regional urbanization. The positive relationship between collision mortality and building size was greatest at large buildings in regions of low urbanization, locally extensive lawns, and low-density structures. Collision mortality was consistently low for small buildings, regardless of large-scale urbanization. The mechanisms shaping broad-scale variation in collision mortality during seasonal migration may be related to habitat selection at a hierarchy of scales and behavioral divergence between urban and rural bird populations. These results suggest that collision prevention measures should be prioritized at large buildings in regions of low urbanization throughout North America
    corecore