11 research outputs found

    Follistatin attenuates radiation-induced fibrosis in a murine model.

    Get PDF
    PURPOSE:Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis. EXPERIMENTAL DESIGN:C57BL/6 mice were subcutaneously injected with follistatin 24 hours prior to irradiation. Mice were irradiated in a 10 x 10 mm square area of the right hind leg with 35 Gy and were given follistatin 24 hours before radiation and three times a week for six months following. Leg extension was measured, and tissue was collected for histological and molecular analysis to evaluate the progression of the radiation-induced fibrosis. RESULTS:Leg extension was improved in follistatin treated mice compared to vehicle treated mice at six months after irradiation. Also, epidermal thickness and cell nucleus area of keratinocytes were decreased by the follistatin treatment compared to the cells in irradiated skin of control mice. Finally, the gene expression of transforming growth factor β1 (Tgfb1), and smooth muscle actin (Acta2) were decreased in the irradiated skin and Acta2 and inhibin βA subunit (Inhba) were decreased in the irradiated muscle of the follistatin treated mice. CONCLUSIONS:Follistatin attenuated the radiation-induced fibrotic response in irradiated mice. These studies provide the data to support further investigation of the use of follistatin to reduce radiation-induced fibrosis in patients undergoing radiotherapy for cancer

    Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies

    No full text
    It is becoming increasingly evident that radiotherapy may benefit from coincident or subsequent immunotherapy. In this study, we examined whether the antitumor effects of radiotherapy, in established triple-negative breast tumors could be enhanced with combinations of clinically relevant monoclonal antibodies (mAb), designed to stimulate immunity [anti-(α)-CD137, α-CD40] or relieve immunosuppression [α-programmed death (PD)-1]. While the concomitant targeting of the costimulatory molecules CD137 and CD40 enhanced the antitumor effects of radiotherapy and promoted the rejection of subcutaneous BALB/c-derived 4T1.2 tumors, this novel combination was noncurative in mice bearing established C57BL/6-derived AT-3 tumors.We identified PD-1 signaling within the AT-3 tumors as a critical limiting factor to the therapeutic efficacy of α-CD137 therapy, alone and in combination with radiotherapy. Strikingly, all mice bearing established orthotopic AT-3 mammary tumors were cured when α-CD137 and α-PD-1 mAbs were combined with single- or low-dose fractionated radiotherapy. CD8 T cells were essential for curative responses to this combinatorial regime. Interestingly, CD137 expression on tumor-associated CD8 T cells was largely restricted to a subset that highly expressed PD-1. These CD137 PD-1 CD8 T cells, persisted in irradiated AT-3 tumors, expressed Tim-3, granzyme B and Ki67 and produced IFN-γ ex vivo in response to phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation. Notably, radiotherapy did not deplete, but enriched tumors of functionally active, tumor-specific effector cells. Collectively, these data show that concomitant targeting of immunostimulatory and inhibitory checkpoints with immunomodulatory mAbs can enhance the curative capacity of radiotherapy in established breast malignancy

    Enhanced lithium-induced brain recovery following cranial irradiation is not impeded by inflammation

    Full text link
    Radiation-induced brain injury occurs in many patients receiving cranial radiation therapy, and these deleterious effects are most profound in younger patients. Impaired neurocognitive functions in both humans and rodents are associated with inflammation, demyelination, and neural stem cell dysfunction. Here we evaluated the utility of lithium and a synthetic retinoid receptor agonist in reducing damage in a model of brain-focused irradiation in juvenile mice. We found that lithium stimulated brain progenitor cell proliferation and differentiation following cranial irradiation while also preventing oligodendrocyte loss in the dentate gyrus of juvenile mice. In response to inflammation induced by radiation, which may have encumbered the optimal reparative action of lithium, we used the anti-inflammatory synthetic retinoid Am80 that is in clinical use in the treatment of acute promyelocytic leukemia. Although Am80 reduced the number of cyclooxygenase-2-positive microglial cells following radiation treatment, it did not enhance lithium-induced neurogenesis recovery, and this alone was not significantly different from the effect of lithium on this proinflammatory response. Similarly, lithium was superior to Am80 in supporting the restoration of new doublecortin-positive neurons following irradiation. These data suggest that lithium is superior in its restorative effects to blocking inflammation alone, at least in the case of Am80. Because lithium has been in routine clinical practice for 60 years, these preclinical studies indicate that this drug might be beneficial in reducing post-therapy late effects in patients receiving cranial radiotherapy and that blocking inflammation in this context may not be as advantageous as previously suggested
    corecore