2,680 research outputs found

    Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    Get PDF
    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments

    NASA Redox Project status summary

    Get PDF
    This report is a summary of the results of the Redox Project effort during Cy 1982. It was presented at the Fifth U.S. Department of Energy Battery and Electrochemical Contractors Conference, Arlington, Va., Dec. 7-9, 1982. The major development during 1982 was the shift from Redox system operation at 25 C with unmixed reactants to operation at 65 C with mixed reactants. This change has made possible a two- or three-fold increase in operating current density, to about 65 mA/sq cm, and an increase in reactant utilization from 40% to about 90%. Both of these improvements will lead to significant system cost reductions. Contract studies have indicated that Redox reactant costs also will be moderate. A new catalyst for the chromuim electrode offers all the advantages of the conventional gold-lead catalyst while being easier to apply and more forgiving in use

    NASA preprototype redox storage system for a photovoltaic stand-alone application

    Get PDF
    A 1 kW preprototype redox storage system underwent characterization tests and was operated as the storage device for a 5 kW (peak) photovoltaic array. The system is described and performance data are presented. Loss mechanisms are discussed and simple design changes leading to significant increases in efficiency are suggested. The effects on system performance of nonequilibrium between the predominant species of complexed chromic ion in the negative electrode reactant solution are indicated

    NASA Redox Storage System Development Project

    Get PDF
    The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office

    Simulated hydrogen cross-leakage in a low-temperature, contained-electrolyte hydrogen-oxygen fuel cell

    Get PDF
    Simulated hydrogen leakage in electrolytic hydrogen-oxygen fuel cell

    Design Flexibility of Redox Flow Systems

    Get PDF
    The characteristics inherent in Redox flow systems permit considerable latitude in designing systems for specific storage applications. The first of these characteristics is the absence of plating/deplating reactions with their attendant morphology changes at the electrodes. This permits a given Redox system to operate over a wide range of depths of discharge and charge/discharge rates. The second characteristic is the separation of power generating components (stacks) from the energy storage components (tanks). This results in cost effective system design, ease of system growth via modularization, and freedom from sizing restraints so that the whole spectrum of applications, from utilities down to single residence can be considered. The final characteristic is the commonality of the reactant fluids which assures that all cells at all times are receiving reactants at the same state of charge. Since no cell can be out of balance with respect to any other cell, it is possible for some cells to be charged while others are discharging, in effect creating a DC to DC transformer. It is also possible for various groups of cells to be connected to separate loads, thus supplying a range of output voltages. Also, trim cells can be used to maintain constant bus voltage as the load is changed or as the depth of discharge increases. The commonality of reactant fluids also permits any corrective measures such as rebalancing to occur at the system level instead of at the single cell level

    Negative electrode catalyst for the iron chromium redox energy storage system

    Get PDF
    A redox cell which operates at elevated temperatures and which utilizes the same two metal couples in each of the two reactant fluids is disclosed. Each fluid includes a bismuth salt and may also include a lead salt. A low cost, cation permselective membrane separates the reactant fluids

    SBM Guide to the Literature as of June 1972

    Get PDF

    Indirect Evidence for L\'evy Walks in Squeeze Film Damping

    Full text link
    Molecular flow gas damping of mechanical motion in confined geometries, and its associated noise, is important in a variety of fields, including precision measurement, gravitational wave detection, and MEMS devices. We used two torsion balance instruments to measure the strength and distance-dependence of `squeeze film' damping. Measured quality factors derived from free decay of oscillation are consistent with gas particle superdiffusion in L\'evy walks and inconsistent with those expected from traditional Gaussian random walk particle motion. The distance-dependence of squeeze film damping observed in our experiments is in agreement with a parameter-free Monte Carlo simulation. The squeeze film damping of the motion of a plate suspended a distance d away from a parallel surface scales with a fractional power between 1/d and 1/d^2.Comment: 5 pages 5 figures accepted for PRD; typo in equation 3 and figure 1 fixe

    Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    Get PDF
    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation
    • …
    corecore