Molecular flow gas damping of mechanical motion in confined geometries, and
its associated noise, is important in a variety of fields, including precision
measurement, gravitational wave detection, and MEMS devices. We used two
torsion balance instruments to measure the strength and distance-dependence of
`squeeze film' damping. Measured quality factors derived from free decay of
oscillation are consistent with gas particle superdiffusion in L\'evy walks and
inconsistent with those expected from traditional Gaussian random walk particle
motion. The distance-dependence of squeeze film damping observed in our
experiments is in agreement with a parameter-free Monte Carlo simulation. The
squeeze film damping of the motion of a plate suspended a distance d away from
a parallel surface scales with a fractional power between 1/d and 1/d^2.Comment: 5 pages 5 figures accepted for PRD; typo in equation 3 and figure 1
fixe