research

Indirect Evidence for L\'evy Walks in Squeeze Film Damping

Abstract

Molecular flow gas damping of mechanical motion in confined geometries, and its associated noise, is important in a variety of fields, including precision measurement, gravitational wave detection, and MEMS devices. We used two torsion balance instruments to measure the strength and distance-dependence of `squeeze film' damping. Measured quality factors derived from free decay of oscillation are consistent with gas particle superdiffusion in L\'evy walks and inconsistent with those expected from traditional Gaussian random walk particle motion. The distance-dependence of squeeze film damping observed in our experiments is in agreement with a parameter-free Monte Carlo simulation. The squeeze film damping of the motion of a plate suspended a distance d away from a parallel surface scales with a fractional power between 1/d and 1/d^2.Comment: 5 pages 5 figures accepted for PRD; typo in equation 3 and figure 1 fixe

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020