81 research outputs found

    Characterization of the chlorate reductase from Pseudomonas chloritidismutans

    Get PDF
    A chlorate reductase has been purified from the chlorate-reducing strain Pseudomonas chloritidismutans. Comparison with the periplasmic (per)chlorate reductase of strain GR-1 showed that the cytoplasmic chlorate reductase of P. chloritidismutans reduced only chlorate and bromate. Differences were also found in N-terminal sequences, molecular weight, and subunit composition. Metal analysis and electron paramagnetic resonance measurements showed the presence of iron and molybdenum, which are also found in other dissimilatory oxyanion reductase

    Microbial Metalloproteomics

    No full text
    Metalloproteomics is a rapidly developing field of science that involves the comprehensive analysis of all metal-containing or metal-binding proteins in a biological sample. The purpose of this review is to offer a comprehensive overview of the research involving approaches that can be categorized as inductively coupled plasma (ICP)-MS based methods, X-ray absorption/fluorescence, radionuclide based methods and bioinformatics. Important discoveries in microbial proteomics will be reviewed, as well as the outlook to new emerging approaches and research areas.BT/BiotechnologyApplied Science

    Steady-state kinetics of the tungsten containing aldehyde: Ferredoxin oxidoreductases from the hyperthermophilic archaeon Pyrococcus furiosus

    No full text
    The tungsten containing Aldehyde:ferredoxin oxidoreductases (AOR) offer interesting opportunities for biocatalytic approaches towards aldehyde oxidation and carboxylic acid reduction. The hyperthermophilic archaeon Pyrococcus furiosus encodes five different AOR family members: glyceraldehyde-3-phosphate oxidoreductase (GAPOR), aldehyde oxidoreductase (AOR), and formaldehyde oxidoreductase (FOR), WOR4 and WOR5. GAPOR functions as a glycolytic enzyme and is highly specific for the substrate glyceraldehyde-3-phosphate (GAP). AOR, FOR and WOR5 have a broad substrate spectrum, and for WOR4 no substrate has been identified to date. As ambiguous kinetic parameters have been reported for different AOR family enzymes the steady state kinetics under different physiologically relevant conditions was explored. The GAPOR substrate GAP was found to degrade at 60 °C by non-enzymatic elimination of the phosphate group to methylglyoxal with a half-life t1/2 = 6.5 min. Methylglyoxal is not a substrate or inhibitor of GAPOR. D-GAP was identified as the only substrate oxidized by GAPOR, and the kinetics of the enzyme was unaffected by the presence of L-GAP, which makes GAPOR the first enantioselective enzyme of the AOR family. The steady-state kinetics of GAPOR showed partial substrate inhibition, which assumes the GAP inhibited form of the enzyme retains some activity. This inhibition was found to be alleviated completely by a 1 M NaCl resulting in increased enzyme activity at high substrate concentrations. GAPOR activity was strongly pH dependent, with the optimum at pH 9. At pH 9, the substrate is a divalent anion and, therefore, positively charged amino acid residues are likely to be involved in the binding of the substrate. FOR exhibited a significant primary kinetic isotope effect of the apparent Vmax for the deuterated substrate, formaldehyde-d2, which shows that the rate-determining step involves a C[sbnd]H bond break from the aldehyde. The implications of these results for the reaction mechanism of tungsten-containing AORs, are discussed.Accepted Author ManuscriptBT/Biocatalysi

    Isothermal Titration Calorimetry in Biocatalysis

    No full text
    Isothermal titration calorimetry (ITC) is a popular chemical analysis technique that can be used to measure macromolecular interactions and chemical and physical processes. ITC involves the measurement of heat flow to and from a measurement cell after each injection during a titration experiment. ITC has been useful to measure the thermodynamics of macromolecular interactions such as protein-ligand or protein-protein binding affinity and also chemical processes such as enzyme catalyzed reactions. The use of ITC in biocatalysis has a number of advantages as ITC enables the measurement of enzyme kinetic parameters in a direct manner and, in principle, can be used for most enzymes and substrates. ITC approaches have been developed to measure reversible and irreversible enzyme inhibition, the effects of molecular crowding on enzyme activity, the activity of immobilized enzymes and the conversion of complex polymeric substrates. A disadvantage is that in order to obtain accurate kinetic parameters special care has to be taken in proper experimental design and data interpretation, which unfortunately is not always the case in reported studies. Furthermore, special caution is necessary when ITC experiments are performed that include solvents, reducing agents and may have side reactions. An important bottleneck in the use of calorimetry to measure enzyme activity is the relatively low throughput, which may be solved in the future by sensitive chip based microfluidic enzyme calorimetric devices.BT/Biocatalysi

    Pyrococcus furiosus glyceraldehyde-3-phosphate oxidoreductase has comparable W6+/5+ and W5+/4+ reduction potentials and unusual [4Fe-4S] EPR properties

    Get PDF
    AbstractPyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has been characterized using EPR-monitored redox titrations. Two different W signals were found. W15+ is an intermediate species in the catalytic cycle, with the midpoint potentials Em(W6+/5+)=−507 mV and Em(W5+/4+)=−491 mV. W25+ represents an inactivated species with Em(W6+/5+)=−329 mV. The cubane cluster exhibits both S=3/2 and S=1/2 signals with the same midpoint potential: Em([4Fe-4S]2+/1+)=−335 mV. The S=1/2 EPR signal is unusual with all g values below 2.0. The titration results combined with catalytic voltammetry data are consistent with electron transfer from glyceraldehyde 3-phosphate first to the tungsten center, then to the cubane cluster and finally to the ferredoxin

    Rhodococcus as A Versatile Biocatalyst in Organic Synthesis

    No full text
    The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic chemistry is becoming more and more popular, and both academia and industry are keen on finding and developing novel enzymes capable of performing otherwise impossible or challenging reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore makes it one of the key bacterial hosts in many areas of research. This review focused on the broad utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism in the spotlight of further research.BT/Biocatalysi

    A thermostable hybrid cluster protein from Pyrococcus furiosus: Effects of the loss of a three helix bundle subdomain

    No full text
    Pyrococcus furiosus hybrid cluster protein (HCP) was expressed in Escherichia coli, purified, and characterized. This is the first archaeal and thermostable HCP to be isolated. Compared with the protein sequences of previously characterized HCPs from mesophiles, the protein sequence of P. furiosus HCP exhibits a deletion of approximately 13 kDa as a single amino acid stretch just after the N-terminal cysteine motif, characteristic for class-III HCPs from (hyper)thermophilic archaea and bacteria. The protein was expressed as a thermostable, soluble homodimeric protein. Hydroxylamine reductase activity of P. furiosus HCP showed a K m value of 0.40 mM and a k cat value of 3.8 s?1 at 70 °C and pH 9.0. Electron paramagnetic resonance spectroscopy showed evidence for the presence of a spin-admixed, S = 3/2 [4Fe–4S]+ cubane cluster and of the hybrid cluster. The cubane cluster of P. furiosus HCP is presumably coordinated by a CXXC–X7–C–X5–C motif close to the N-terminus, which is similar to the CXXC–X8–C–X5–C motif of the Desulfovibrio desulfuricans and Desulfovibrio vulgaris HCPs. Amino acid sequence alignment and homology modeling of P. furiosus HCP reveal that the deletion results in a loss of one of the two three-helix bundles of domain 1. Clearly the loss of one of the three-helix bundles of domain 1 does not diminish the hydroxylamine reduction activity and the incorporation of the iron–sulfur clusters.BiotechnologyApplied Science

    Probing batch and continuous flow reactions in organic solvents:Granulicella tundricolahydroxynitrile lyase (GtHNL)

    No full text
    Granulicella tundricolahydroxynitrile lyase (GtHNL) is a manganese dependent cupin which catalyses the enantioselective synthesis of (R)-cyanohydrins. TheGtHNL triple variant A40H/V42T/Q110H, previously reported to exhibit a high activity and stability, was immobilised on Celite R-633 by adsorption. The synthesis of (R)-mandelonitrile catalysed by immobilised enzyme in a rotating bed reactor was compared to a continuous flow reactor. A batch reaction was used as reference system and organic solvent (MTBE) was used as reaction medium to suppress the chemical background reaction, ensuring the synthesis of enantiopure cyanohydrin. The rotating bed reactor, designed to boost conversion rates due to enhanced mass transfer, did not greatly enhance the reaction displaying a rate 1.7 times higher than the reference batch model. Moreover, similar conversion (96% after 4 hours) and recyclability were observed as compared to the reference system. The continuous flow reactor displayed rates 2 and 3 times higher than the rotating bed and the reference batch systems, respectively. Good conversions were achieved within minutes (97% conversion in 4 minutes at 0.1 mL min−1). The immobilised enzyme displayed excellent enantioselectivity and high operational stability under all evaluated conditions. Overall,GtHNL triple variant A40H/V42T/Q110H immobilised on Celite R-633 is an excellent catalyst for the synthesis of (R)-mandelonitrile with a great potential for continuous flow production of cyanohydrins.</p
    • …
    corecore