11 research outputs found
Kum bünyeli toprakların nem içeriklerinin kalibrasyon gerektirmeyen mikrodalga ölçüm yöntemleriyle belirlenmesi
Honey-Water Content Analysis by Mixing Models Using a Self-Calibrating Microwave Method
Microwave techniques, as an indirect approach, can be applied for analyzing water content in honey by way of permittivity measurements. However, these techniques require proper calibration to accurately perform such indirect evaluation. Improper calibration standards used in this calibration process could naturally result in a reduction in the accuracy and thus the performance of dielectric characterization using microwaves. Self-calibrating microwave techniques can reduce the effects of imprecise standards and thus improve the performance of microwave measurements by bypassing the requirement of calibration standards. In this study, we develop a self-calibrating microwave measurement technique to determine the relative permittivity of honey samples and implement binary mixing models to predict adulteration levels of water-adulterated honey. From this implementation, it is observed that the parallel-capacitance mixing model could efficiently be applied to determine the concentration of water adulteration by examining the differences between absolute values of the real parts of the measured and predicted complex permittivities of adulterated honey
Simple and inexpensive microwave setup for industrial based applications: Quantification of flower honey adulteration as a case study
A simple and inexpensive microwave measurement setup based on measurements of magnitudes of transmission properties ( | S 21 | dB \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} ) is proposed for industrial-based microwave aquametry (moisture or water content) applications. An easy-to-apply calibration procedure based on normalization is implemented to eliminate systematic errors in the measurement system. As a case study, we applied this setup for the quantification of water-adulteration in flower honey. After validating this system by distilled water and pure flower honey measurements, | S 21 | dB \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} measurements of the pure flower honey with various adulteration percentages ( delta \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} ) up to 9% are conducted to examine the performance of the measurement setup for quantification of water adulteration. A multi-dimensional fitting procedure is implemented to predict delta \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} using the proposed inexpensive microwave measurement setup. It is shown that it is possible to quantify an adulteration level with an accuracy better than -/+ 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} % by the proposed measurement setup and the applied multi-dimensional fitting procedure.TUBITAK BIDEB program [2211/C]The author H. Korkmaz acknowledges the TUBITAK BIDEB 2211/C program for supporting his studies
Calibration-Free Broadband Determination of Soil Permittivity by Coaxial Line Measurements
Broadband Soil Permittivity Measurements Using a Novel De-Embedding Line-Line Method
A new de-embedding line-line method has been proposed for accurate complex relative permittivity (epsilon(r)) determination of soil samples loaded into an EIA 1-5/8 '' coaxial transmission line measurement system. The method has three main features. First, it bypasses the requirement of calibration of this system by using only two identical coaxial lines with different lengths. Second, it does not need any numerical technique for epsilon(r) determination. Third, it does not require knowledge of electromagnetic properties and thickness information of the bead used for supporting soil samples. The method is next validated by simulations performed using a full 3-D electromagnetic simulation program (CST Microwave Studio) and by epsilon(r) measurement of a polyethylene (PE) material. Finally, epsilon(r) values of three air-dried and water-saturated soil samples having 90% or more sand content with different electrical conductivities (ECs) and gathered from different areas of the city Gaziantep in Turkey, were measured
Permittivity Extraction of Soil Samples Using Coaxial-Line Measurements by a Simple Calibration
Prediction of water-adulteration within honey by air-line de-embedding waveguide measurements
Permittivity Extraction of Soil Samples Using Coaxial-Line Measurements by a Simple Calibration
© 1980-2012 IEEE.A new microwave method is proposed for accurate determination of complex permittivity \varepsilon {\textrm {rs}} = \varepsilon {\textrm {rs}}^{\prime } - j \varepsilon {\textrm {rs}}^{\prime \prime } of soil samples inserted over a holder within the Electronic Industries Association (EIA) 1-5/8' coaxial measurement cell. Such a determination could be indirectly correlated with the volumetric moisture content of soil samples by microwave measurements. The method has three main advantages. First, it utilizes a simple calibration procedure involving uncalibrated measurements of an empty cell, the same cell loaded with a soil holder (a dielectric sample), and the same cell with a soil sample over this holder, thus eliminating the need for any formal calibration procedure. Second, it uses one measurement cell for extracting \varepsilon {\textrm {rs}}. Third, it does not require any numerical toolbox for determining \varepsilon {\textrm {rs}}. The method is validated by simulations of a synthesized soil sample and by experiments with a low-loss polyethylene sample. Its accuracy is examined in reference to: 1) two measurement cells with different lengths (length independence); 2) the position of the holder in the cell; and 3) an offset in sample length. Calibration curves (the volumetric moisture content \theta{V} versus \varepsilon {\textrm {rs}}^{\prime } ) obtained from fitting measured \varepsilon {\textrm {rs}}^{\prime } by our method to \theta {V} at 2 and 3 GHz are compared with other calibration curves in the literature for the analysis of the performance of the proposed method (PM). It is shown that calibration curves obtained from our method are similar to those obtained from other methods requiring complex calibration procedures
Honey-Water Content Analysis by Mixing Models Using a Self-Calibrating Microwave Method
Microwave techniques, as an indirect approach, can be applied for analyzing water content in honey by way of permittivity measurements. However, these techniques require proper calibration to accurately perform such indirect evaluation. Improper calibration standards used in this calibration process could naturally result in a reduction in the accuracy and thus the performance of dielectric characterization using microwaves. Self-calibrating microwave techniques can reduce the effects of imprecise standards and thus improve the performance of microwave measurements by bypassing the requirement of calibration standards. In this study, we develop a self-calibrating microwave measurement technique to determine the relative permittivity of honey samples and implement binary mixing models to predict adulteration levels of water-adulterated honey. From this implementation, it is observed that the parallel-capacitance mixing model could efficiently be applied to determine the concentration of water adulteration by examining the differences between absolute values of the real parts of the measured and predicted complex permittivities of adulterated honey
