71 research outputs found

    Expression of TRPC6 channels in human epithelial breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TRP channels have been shown to be involved in tumour generation and malignant growth. However, the expression of these channels in breast cancer remains unclear. Here we studied the expression and function of endogenous TRPC6 channels in a breast cancer cell line (MCF-7), a human breast cancer epithelial primary culture (hBCE) and in normal and tumour breast tissues.</p> <p>Methods</p> <p>Molecular (Western blot and RT-PCR), and immunohistochemical techniques were used to investigate TRPC6 expression. To investigate the channel activity in both MCF-7 cells and hBCE we used electrophysiological technique (whole cell patch clamp configuration).</p> <p>Results</p> <p>A non selective cationic current was activated by the oleoyl-2-acetyl-sn-glycerol (OAG) in both hBCE and MCF-7 cells. OAG-inward current was inhibited by 2-APB, SK&F 96365 and La<sup>3+</sup>. TRPC6, but not TRPC7, was expressed both in hBCE and in MCF-7 cells. TRPC3 was only expressed in hBCE. Clinically, TRPC6 mRNA and protein were elevated in breast carcinoma specimens in comparison to normal breast tissue. Furthermore, we found that the overexpression of TRPC6 protein levels were not correlated with tumour grades, estrogen receptor expression or lymph node positive tumours.</p> <p>Conclusion</p> <p>Our results indicate that TRPC6 channels are strongly expressed and functional in breast cancer epithelial cells. Moreover, the overexpression of these channels appears without any correlation with tumour grade, ER expression and lymph node metastasis. Our findings support the idea that TRPC6 may have a role in breast carcinogenesis.</p

    Intermediate conductance Ca2+ activated K+ channels are expressed and functional in breast adenocarcinomas: correlation with tumour grade and metastasis status

    No full text
    K+ channels are key molecules in the progression of several cancer types and are considered to be potential targets for cancer therapy. In this study, we investigated the intermediateconductance Ca2+-activated K+ channels (hKCa3.1) expression in both breast carcinoma (BC) specimens and human breast cancer epithelial primary cell cultures (hBCE) using immuno-histochemistry (60 samples), quantitative Real-Time RT-PCR (30 samples) and Western blot assay (30 samples). We also looked at whether or not the expression of these channels is correlated with breast carcinomas grade tumours and metastasis status. Furthermore, we characterized the hKCa3.1 channel activity in hBCE cells by using the Whole Cell Patch Clamp Technique. We found that hKCa3.1 transcripts and proteins were expressed in both BC samples and hBCE cells. Clinicopathologic evaluation indicated a significant correlation between hKCa3.1-expression and tumour grade. hKCa3.1 mRNA and protein were more highly expressed in grade III tumours than in both grades I and II. However, the hKCa3.1 expression-increase according to grade was only observed in tumours with negative metastasis status. Moreover, the hKCa3.1 channels expressed in hBCE cells are functional. This was attested by patch-clamp recordings showing typical hKCa3.1-mediated currents in these cells. In conclusion, these data suggest that hKCa3.1 might contribute to breast tumour-progression and can serve as a useful prognostic marker for breast cance

    Impact of Pesticide Residues on the Gut-Microbiota–Blood–Brain Barrier Axis: A Narrative Review

    No full text
    International audienceAccumulating evidence indicates that chronic exposure to a low level of pesticides found in diet affects the human gut-microbiota-blood-brain barrier (BBB) axis. This axis describes the physiological and bidirectional connection between the microbiota, the intestinal barrier (IB), and the BBB. Preclinical observations reported a gut microbial alteration induced by pesticides, also known as dysbiosis, a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs, such as the BBB. However, the interplay between pesticides, microbiota, the IB, and the BBB is still not fully explored. In this review, we first consider the similarities/differences between these two physiological barriers and the different pathways that link the gut microbiota and the BBB to better understand the dialogue between bacteria and the brain. We then discuss the effects of chronic oral pesticide exposure on the gut-microbiota-BBB axis and raise awareness of the danger of chronic exposure, especially during the perinatal period (pregnant women and offspring)
    • …
    corecore