48 research outputs found

    A Mixed Integer Programming Model for Improving Theater Distribution Force Flow Analysis

    Get PDF
    Obtaining insight into potential vehicle mixtures that will support theater distribution, the final leg of military distribution, can be a challenging and time consuming process for United States Transportation Command (USTRANSCOM) force flow analysts. The current process of testing numerous different vehicle mixtures until separate simulation tools demonstrate feasibility is iterative and overly burdensome. Improving on existing research, a mixed integer programming model was developed to allocate specific vehicle types to delivery items, or requirements, in a manner that would minimize both operational costs and late deliveries. This gives insight into the types and amounts of vehicles necessary for feasible delivery and identifies possible bottlenecks in the physical network. Further solution post-processing yields potential vehicle beddowns which can then be used as approximate baselines for further distribution analysis. A multimodal, heterogeneous set of vehicles is used to model the pickup and delivery of requirements within given time windows. To ensure large scale problems do not become intractable, precise set notation is utilized within the mixed integer program to ensure only necessary variables and constraints are generated

    AlGaAs/GaAs transverse junction stripe lasers with distributed feedback

    Get PDF
    Transverse junction stripe (TJS) lasers with periodic feedback were fabricated in two geometries. An interferometric and wet chemical etching technique was used to create a feedback grating across the entire pumping region for the distributed feedback (DFB) TJS laser and to create the separate distributed Bragg reflectors/DBR) for the TJS/DBR laser. The TJS/DFB laser was a double heterostructure device grown by liquid phase epitaxy (LPE) and had a third order grating etched in the top ALO.2GaO.8As layer. The grating was buried by growing an ALO.35GaO.65As layer on the grating by metal organic chemical vapor deposition (MO-CVD). The TJS/DBR laser was also fabricated in an LPE double heterostructure. The top AlGaAs layer was thinned to 0.1 micron over more than half of the laser so that the grating would be close to the GaAs active layer and optical field. Single mode operation in both configurations was obtained. The thermal shift of the laser wavelength in both cases was less than 1 Angstrom/deg K, compared to the 3 Angstrom/deg K shift of the spontaneous emission peak

    Picosecond absorption dynamics of photoexcited InGaP epitaxial films

    Get PDF
    Includes bibliographical references (page 92).The absorption recovery of a photoexcited InGaP epitaxial film 0.4 µm thick was investigated using the pump-probe laser technique and found to have a time constant of 55 ps at room temperature. Measurements done in the temperature range of 300-50 K show the decay of the photoexcited carrier distribution to be dominated by ambipolar diffusion and surface recombination. The measured absorption recovery time constant corresponds to an ambipolar diffusion coefficient D > 2.8 cm2/s and a surface recombination velocity of S > 4 × 105 cm/s at room temperature.This work was supported by the National Science Foundation grant (USA/Argentina) INT 8802563, the Air Force Office of Scientific Research (contract 89-0513), and the Center for Optoelectronic Computing Systems, sponsored by the National Science Foundation/Engineering Research Center grant ECD 9015128 and by the Colorado Advanced Technology Institute, an agency of the State of Colorado. C. S. Menoni acknowledges the support of the National Science Foundation grant ECS 9008899 and the CSU Faculty Research Grant

    High Speed Traveling Wave Electrooptic Intensity Modulator with a Doped PIN Semiconductor Junction

    Full text link
    A high-electrooptic-efficiency Mach-Zehnder intensity modulator is demonstrated with a bandwidth exceeding 40 GHZ. The 1 mm-long modulator has a switching voltage comparable to undoped semiconductor designs of much greater length

    Barrier-width dependence of emission in triple-quantum-well broadband light-emitting diodes

    No full text
    corecore