6 research outputs found

    The coupled boundary layers and air-sea transfer experiment in low winds

    Get PDF
    Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 88 (2007): 341-356, doi:10.1175/bams-88-3-341.The Office of Naval Research's Coupled Boundary Layers and Air–Sea Transfer (CBLAST) program is being conducted to investigate the processes that couple the marine boundary layers and govern the exchange of heat, mass, and momentum across the air–sea interface. CBLAST-LOW was designed to investigate these processes at the low-wind extreme where the processes are often driven or strongly modulated by buoyant forcing. The focus was on conditions ranging from negligible wind stress, where buoyant forcing dominates, up to wind speeds where wave breaking and Langmuir circulations play a significant role in the exchange processes. The field program provided observations from a suite of platforms deployed in the coastal ocean south of Martha's Vineyard. Highlights from the measurement campaigns include direct measurement of the momentum and heat fluxes on both sides of the air–sea interface using a specially constructed Air–Sea Interaction Tower (ASIT), and quantification of regional oceanic variability over scales of O (1–104 mm) using a mesoscale mooring array, aircraft-borne remote sensors, drifters, and ship surveys. To our knowledge, the former represents the first successful attempt to directly and simultaneously measure the heat and momentum exchange on both sides of the air–sea interface. The latter provided a 3D picture of the oceanic boundary layer during the month-long main experiment. These observations have been combined with numerical models and direct numerical and large-eddy simulations to investigate the processes that couple the atmosphere and ocean under these conditions. For example, the oceanic measurements have been used in the Regional Ocean Modeling System (ROMS) to investigate the 3D evolution of regional ocean thermal stratification. The ultimate goal of these investigations is to incorporate improved parameterizations of these processes in coupled models such as the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) to improve marine forecasts of wind, waves, and currents.This work was supported by the Office of Naval Research

    Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud- Aerosol Interactions

    No full text
    Large rifts and gradients are observed frequently in the extensive stratocumulus decks that exist over the eastern areas of the Pacific and the Atlantic. These rifts--areas of lo

    Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol

    No full text
    In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production

    The coupled boundary layers and air-sea transfer experiment in low winds (CBLAST-LOW)

    Get PDF
    Bull. American Mereorol. Soc., Vol. 88, 3, 341-356.The article of record as published may be located at http://dx.doi.org/10.1175/BAMS-88-3-341Observations from a suite of platforms deployed in the coastal ocean are being combined with numerical models and simulations to investigate the processes that couple the atmosphere and ocean
    corecore