47 research outputs found
Effect of cell shape change on the function and differentiation of rabbit mammary cells in culture
We examined the role of cell shape, cytodifferentiation, and tissue topography on the induction and maintenance of functional differentiation in rabbit mammary cells grown as primary cultures on two-dimensional collagen surfaces or in three-dimensional collagen matrices. Mammary glands from mid-pregnant rabbits were dissociated into single cells, and epithelial cells were enriched by isopycnic centrifugation. Small spheroids of epithelial cells (approximately 50 cells) that formed on a rotary shaker were plated on or embedded in collagen gels. The cells were cultured for 1 d in serum-containing medium and then for up to 25 d in chemically defined medium. In some experiments, epithelial monolayers on gels were mechanically freed from the dishes on day 2 or 5. These gels retracted and formed floating collagen gels. On attached collagen gels, flat monolayers of a single cell type developed within a few days. The cells synthesized DNA until the achievement of confluence but did not accumulate milk proteins. No morphological changes were induced by prolactin (PRL). On floating gels, two cell types appeared in the absence of cell proliferation. The cells in direct contact with the medium became cuboidal and developed intracellular organelles typical of secretory cells. PRL-induced lipogenesis, resulting in large fat droplets filling the apical cytoplasm and accumulation of casein and α-lactalbumin in vesicles surrounding the fat droplets. We detected tranferrin in the presence or absence of PRL intracellularly in small vesicles but also in the collagen matrix in contact with the cell layer. The second cell type, rich in microfilaments and reminiscent of the myoepithelial cells, was situated between the secretory cell layer and the collagen matrix. In embedding gels, the cells formed hollow ductlike structures, which grew continuously in size. Secretory cells formed typical lumina distended by secretory products. We found few microfilament-rich cells in contact with the collagen gels. Storage and secretion of fat, caseins and alpha-lactalbumin required the presence of PRL, whereas the accumulation and vectorial discharge of transferrin was prolactin independent. There was no differentiation gradient between the tip and the cent of the outgrowth, since DNA synthesis and milk protein storage were random along the tubular structures. These results indicate that establishment of functional polarity and induction of cytodifferentiation are influenced by the nature of the interaction of the cells with the collagen structure. The morphological differentiation in turn plays an important role in the synthesis, storage, and secretion of fat and milk proteins
Analysis of congenital disorder of glycosylation-Id in a yeast model system shows diverse site-specific under-glycosylation of glycoproteins
Asparagine-linked glycosylation is a common post translational modification of proteins in eukaryotes. Mutations in the human ALG3 gene cause changed levels and altered glycan structures on mature glycoproteins and are the cause of a severe congenital disorder of glycosylation (CDG-Id). Diverse glycoproteins are also under-glycosylated in Saccharomyces cerevisae alg3 mutants. Here we analyzed site-specific glycosylation occupancy in this yeast model system using peptide-N-glycosidase F to label glycosylation sites with an asparagine-aspartate conversion that creates a new endoproteinase AspN cleavage site, followed by proteolytic digestion, and detection of peptides and glycopeptides by LC-ESI-MS/MS. We used this analytical method to identify and measure site specific glycosylation occupancy in alg3 mutant and wild type yeast strains. We found decreased site specific N-glycosylation occupancy in the alg3 knockout strain preferentially at Asn-Xaa-Ser sequences located in secondary structural elements, features previously associated with poor glycosylation efficiency. Furthermore, we identified 26 previously experimentally unverified glycosylation sites. Our results provide insights into the underlying mechanisms of disease in CDG-Id, and our methodology will be useful in site specific glycosylation analysis in many model systems and clinical applications
Evolutional and clinical implications of the epigenetic regulation of protein glycosylation
Protein N glycosylation is an ancient posttranslational modification that enriches protein structure and function. The addition of one or more complex oligosaccharides (glycans) to the backbones of the majority of eukaryotic proteins makes the glycoproteome several orders of magnitude more complex than the proteome itself. Contrary to polypeptides, which are defined by a sequence of nucleotides in the corresponding genes, glycan parts of glycoproteins are synthesized by the activity of hundreds of factors forming a complex dynamic network. These are defined by both the DNA sequence and the modes of regulating gene expression levels of all the genes involved in N glycosylation. Due to the absence of a direct genetic template, glycans are particularly versatile and apparently a large part of human variation derives from differences in protein glycosylation. However, composition of the individual glycome is temporally very constant, indicating the existence of stable regulatory mechanisms. Studies of epigenetic mechanisms involved in protein glycosylation are still scarce, but the results suggest that they might not only be important for the maintenance of a particular glycophenotype through cell division and potentially across generations but also for the introduction of changes during the adaptive evolution
Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future
There are a number of limitations to using conventional diagnostic markers for patients with clinical suspicion of infection. As a consequence, unnecessary and prolonged exposure to antimicrobial agents adversely affect patient outcomes, while inappropriate antibiotic therapy increases antibiotic resistance. A growing body of evidence supports the use of procalcitonin (PCT) to improve diagnosis of bacterial infections and to guide antibiotic therapy. For patients with upper and lower respiratory tract infection, post-operative infections and for severe sepsis patients in the intensive care unit, randomized-controlled trials have shown a benefit of using PCT algorithms to guide decisions about initiation and/or discontinuation of antibiotic therapy. For some other types of infections, observational studies have shown promising first results, but further intervention studies are needed before use of PCT in clinical routine can be recommended. The aim of this review is to summarize the current evidence for PCT in different infections and clinical settings, and discuss the reliability of this marker when used with validated diagnostic algorithms
The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19)
Cell proliferation and milk protein gene expression in rabbit mammary cell cultures
We analyzed the synthesis of DNA, the rate of cell proliferation, and the expression of milk protein genes in mammary cells grown as primary cultures on or in collagen gels in chemically defined media. We assessed DNA synthesis and cell growth, measured by [(3) H]- thymidine incorporation into acid-insoluble material, DNA content, and cell counts, in a progesterone- and prolactin-containing medium. In some experiments, cultures were pulsed for 1 h with [(3)H]thymidine and dissociated into individual cells which were cytocentrifuged and processed for immunocytochemistry and autoradiography. We analyzed expression of milk protein genes at the transcriptional, translation and posttranslational levels in progesterone-depleted medium in the presence or absence of prolactin. We measured protein secretion by radioimmunoassays with antisera directed against caseins, α-lactalbumin and milk transferrin1. We determined protein synthesis by incorporating radio-labeled amino acids into acid-precipitable material and by immunoprecipitating biosynthetically labeled milk proteins. We assessed the accumulation of casein mRNA by hybridizing total cellular RNA extracted from cultured cells with (32)P-labeled casein cDNA probes. On attached collagen gels, the cells synthesized DNA and replicated until they became confluent. The overall protein synthetic activity was low, and no milk proteins were synthesized or secreted even in the presence of prolactin. The block in milk protein gene expression was not restricted to translational or posttranslational events but also included transcription, since no casein mRNA accumulated in these cells. On floating gels, protein synthesis was threefold higher than in cells from attached gels. Overall protein synthesis as well as casein and α-lactalbumin synthesis and secretion were prolactin-dependent with maximal stimulation at around 10(-9) M. A marked inhibition occurred at higher hormone concentrations. Casein mRNA accumulated in these cells, provided prolactin was present in the medium. In contrast, these cells did not synthesize DNA, nor did they replicate. In embedding gels, the rate of cell proliferation was exponential over 25 d with a doubling time of approximately 70 h. The overall protein synthesis increase was parallel in time with the increase in cell number. Caseins and α-lactalbumin (in contrast to transferrin) were synthesized only in the presence of prolactin. We observed the same hormone dependency as with cells growing on floating gels. The number of casein- and transferring-positive cells was measured after dissociating the cell cultures. At day 12, 60 percent of the total cells stored transferring in small cytoplasmic vesicles, whereas only 25 percent of the cells accumulated casein. Differences in the organization and in the shape of mammary cells depending on cell surface conditions suggest that the geometry of the cells, their interaction with extracellular matrix constituents, and cell-to-cell interactions play a role in the expression of two mammary functions: DNA synthesis and growth, as well as milk protein gene expression
RFT1-CDG: Deafness as a novel feature of congenital disorders of glycosylation
Congenital disorders of glycosylation (CDG) are genetic diseases due to defects in the synthesis of glycans and in the attachment of glycans to lipids and proteins. Actually, some 42 CDG are known including defects in protein N-glycosylation, in protein O-glycosylation, in lipid glycosylation, and in multiple and other glycosylation pathways. Most CDG are multisystem diseases and a large number of signs and symptoms have already been reported in CDG. An exception to this is deafness. This symptom has not been observed as a consistent feature in CDG. In 2008, a novel defect was identified in protein N-glycosylation, namely in RFT1. This is a defect in the assembly of N-glycans. RFT1 is involved in the transfer of Man(5)GlcNAc(2)-PP-Dol from the cytoplasmic to the luminal side of the endoplasmic reticulum. According to the novel nomenclature (non-italicized gene symbol followed by -CDG) this defect is named RFT1-CDG. Recently, three other patients with RFT1-CDG have been reported and here we report two novel patients. Remarkably, all six patients with RFT1-CDG show sensorineural deafness as part of a severe neurological syndrome. We conclude that RFT1-CDG is the first 'deafness-CDG'. CDG should be included in the work-up of congenital, particularly syndromic, hearing loss