132 research outputs found

    Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound

    Full text link
    We introduce synchronization strings as a novel way of efficiently dealing with synchronization errors, i.e., insertions and deletions. Synchronization errors are strictly more general and much harder to deal with than commonly considered half-errors, i.e., symbol corruptions and erasures. For every ϵ>0\epsilon >0, synchronization strings allow to index a sequence with an ϵO(1)\epsilon^{-O(1)} size alphabet such that one can efficiently transform kk synchronization errors into (1+ϵ)k(1+\epsilon)k half-errors. This powerful new technique has many applications. In this paper, we focus on designing insdel codes, i.e., error correcting block codes (ECCs) for insertion deletion channels. While ECCs for both half-errors and synchronization errors have been intensely studied, the later has largely resisted progress. Indeed, it took until 1999 for the first insdel codes with constant rate, constant distance, and constant alphabet size to be constructed by Schulman and Zuckerman. Insdel codes for asymptotically large or small noise rates were given in 2016 by Guruswami et al. but these codes are still polynomially far from the optimal rate-distance tradeoff. This makes the understanding of insdel codes up to this work equivalent to what was known for regular ECCs after Forney introduced concatenated codes in his doctoral thesis 50 years ago. A direct application of our synchronization strings based indexing method gives a simple black-box construction which transforms any ECC into an equally efficient insdel code with a slightly larger alphabet size. This instantly transfers much of the highly developed understanding for regular ECCs over large constant alphabets into the realm of insdel codes. Most notably, we obtain efficient insdel codes which get arbitrarily close to the optimal rate-distance tradeoff given by the Singleton bound for the complete noise spectrum

    Interactive Channel Capacity Revisited

    Full text link
    We provide the first capacity approaching coding schemes that robustly simulate any interactive protocol over an adversarial channel that corrupts any ϵ\epsilon fraction of the transmitted symbols. Our coding schemes achieve a communication rate of 1O(ϵloglog1/ϵ)1 - O(\sqrt{\epsilon \log \log 1/\epsilon}) over any adversarial channel. This can be improved to 1O(ϵ)1 - O(\sqrt{\epsilon}) for random, oblivious, and computationally bounded channels, or if parties have shared randomness unknown to the channel. Surprisingly, these rates exceed the 1Ω(H(ϵ))=1Ω(ϵlog1/ϵ)1 - \Omega(\sqrt{H(\epsilon)}) = 1 - \Omega(\sqrt{\epsilon \log 1/\epsilon}) interactive channel capacity bound which [Kol and Raz; STOC'13] recently proved for random errors. We conjecture 1Θ(ϵloglog1/ϵ)1 - \Theta(\sqrt{\epsilon \log \log 1/\epsilon}) and 1Θ(ϵ)1 - \Theta(\sqrt{\epsilon}) to be the optimal rates for their respective settings and therefore to capture the interactive channel capacity for random and adversarial errors. In addition to being very communication efficient, our randomized coding schemes have multiple other advantages. They are computationally efficient, extremely natural, and significantly simpler than prior (non-capacity approaching) schemes. In particular, our protocols do not employ any coding but allow the original protocol to be performed as-is, interspersed only by short exchanges of hash values. When hash values do not match, the parties backtrack. Our approach is, as we feel, by far the simplest and most natural explanation for why and how robust interactive communication in a noisy environment is possible

    Synchronization Strings: Explicit Constructions, Local Decoding, and Applications

    Full text link
    This paper gives new results for synchronization strings, a powerful combinatorial object that allows to efficiently deal with insertions and deletions in various communication settings: \bullet We give a deterministic, linear time synchronization string construction, improving over an O(n5)O(n^5) time randomized construction. Independently of this work, a deterministic O(nlog2logn)O(n\log^2\log n) time construction was just put on arXiv by Cheng, Li, and Wu. We also give a deterministic linear time construction of an infinite synchronization string, which was not known to be computable before. Both constructions are highly explicit, i.e., the ithi^{th} symbol can be computed in O(logi)O(\log i) time. \bullet This paper also introduces a generalized notion we call long-distance synchronization strings that allow for local and very fast decoding. In particular, only O(log3n)O(\log^3 n) time and access to logarithmically many symbols is required to decode any index. We give several applications for these results: \bullet For any δ0\delta0 we provide an insdel correcting code with rate 1δϵ1-\delta-\epsilon which can correct any O(δ)O(\delta) fraction of insdel errors in O(nlog3n)O(n\log^3n) time. This near linear computational efficiency is surprising given that we do not even know how to compute the (edit) distance between the decoding input and output in sub-quadratic time. We show that such codes can not only efficiently recover from δ\delta fraction of insdel errors but, similar to [Schulman, Zuckerman; TransInf'99], also from any O(δ/logn)O(\delta/\log n) fraction of block transpositions and replications. \bullet We show that highly explicitness and local decoding allow for infinite channel simulations with exponentially smaller memory and decoding time requirements. These simulations can be used to give the first near linear time interactive coding scheme for insdel errors

    Near-Linear Time Insertion-Deletion Codes and (1+ε\varepsilon)-Approximating Edit Distance via Indexing

    Full text link
    We introduce fast-decodable indexing schemes for edit distance which can be used to speed up edit distance computations to near-linear time if one of the strings is indexed by an indexing string II. In particular, for every length nn and every ε>0\varepsilon >0, one can in near linear time construct a string IΣnI \in \Sigma'^n with Σ=Oε(1)|\Sigma'| = O_{\varepsilon}(1), such that, indexing any string SΣnS \in \Sigma^n, symbol-by-symbol, with II results in a string SΣnS' \in \Sigma''^n where Σ=Σ×Σ\Sigma'' = \Sigma \times \Sigma' for which edit distance computations are easy, i.e., one can compute a (1+ε)(1+\varepsilon)-approximation of the edit distance between SS' and any other string in O(npoly(logn))O(n \text{poly}(\log n)) time. Our indexing schemes can be used to improve the decoding complexity of state-of-the-art error correcting codes for insertions and deletions. In particular, they lead to near-linear time decoding algorithms for the insertion-deletion codes of [Haeupler, Shahrasbi; STOC `17] and faster decoding algorithms for list-decodable insertion-deletion codes of [Haeupler, Shahrasbi, Sudan; ICALP `18]. Interestingly, the latter codes are a crucial ingredient in the construction of fast-decodable indexing schemes

    Lower Bounds on the van der Waerden Numbers: Randomized- and Deterministic-Constructive

    Get PDF
    The van der Waerden number W(k,2) is the smallest integer n such that every 2-coloring of 1 to n has a monochromatic arithmetic progression of length k. The existence of such an n for any k is due to van der Waerden but known upper bounds on W(k,2) are enormous. Much effort was put into developing lower bounds on W(k,2). Most of these lower bound proofs employ the probabilistic method often in combination with the Lov\'asz Local Lemma. While these proofs show the existence of a 2-coloring that has no monochromatic arithmetic progression of length k they provide no efficient algorithm to find such a coloring. These kind of proofs are often informally called nonconstructive in contrast to constructive proofs that provide an efficient algorithm. This paper clarifies these notions and gives definitions for deterministic- and randomized-constructive proofs as different types of constructive proofs. We then survey the literature on lower bounds on W(k,2) in this light. We show how known nonconstructive lower bound proofs based on the Lov\'asz Local Lemma can be made randomized-constructive using the recent algorithms of Moser and Tardos. We also use a derandomization of Chandrasekaran, Goyal and Haeupler to transform these proofs into deterministic-constructive proofs. We provide greatly simplified and fully self-contained proofs and descriptions for these algorithms

    Optimal Gossip with Direct Addressing

    Full text link
    Gossip algorithms spread information by having nodes repeatedly forward information to a few random contacts. By their very nature, gossip algorithms tend to be distributed and fault tolerant. If done right, they can also be fast and message-efficient. A common model for gossip communication is the random phone call model, in which in each synchronous round each node can PUSH or PULL information to or from a random other node. For example, Karp et al. [FOCS 2000] gave algorithms in this model that spread a message to all nodes in Θ(logn)\Theta(\log n) rounds while sending only O(loglogn)O(\log \log n) messages per node on average. Recently, Avin and Els\"asser [DISC 2013], studied the random phone call model with the natural and commonly used assumption of direct addressing. Direct addressing allows nodes to directly contact nodes whose ID (e.g., IP address) was learned before. They show that in this setting, one can "break the logn\log n barrier" and achieve a gossip algorithm running in O(logn)O(\sqrt{\log n}) rounds, albeit while using O(logn)O(\sqrt{\log n}) messages per node. We study the same model and give a simple gossip algorithm which spreads a message in only O(loglogn)O(\log \log n) rounds. We also prove a matching Ω(loglogn)\Omega(\log \log n) lower bound which shows that this running time is best possible. In particular we show that any gossip algorithm takes with high probability at least 0.99loglogn0.99 \log \log n rounds to terminate. Lastly, our algorithm can be tweaked to send only O(1)O(1) messages per node on average with only O(logn)O(\log n) bits per message. Our algorithm therefore simultaneously achieves the optimal round-, message-, and bit-complexity for this setting. As all prior gossip algorithms, our algorithm is also robust against failures. In particular, if in the beginning an oblivious adversary fails any FF nodes our algorithm still, with high probability, informs all but o(F)o(F) surviving nodes
    corecore